Weyl group of a cuspidal parabolic

A. W. Knapp

Annales scientifiques de l'École Normale Supérieure (1975)

  • Volume: 8, Issue: 2, page 275-294
  • ISSN: 0012-9593

How to cite

top

Knapp, A. W.. "Weyl group of a cuspidal parabolic." Annales scientifiques de l'École Normale Supérieure 8.2 (1975): 275-294. <http://eudml.org/doc/81957>.

@article{Knapp1975,
author = {Knapp, A. W.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {275-294},
publisher = {Elsevier},
title = {Weyl group of a cuspidal parabolic},
url = {http://eudml.org/doc/81957},
volume = {8},
year = {1975},
}

TY - JOUR
AU - Knapp, A. W.
TI - Weyl group of a cuspidal parabolic
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1975
PB - Elsevier
VL - 8
IS - 2
SP - 275
EP - 294
LA - eng
UR - http://eudml.org/doc/81957
ER -

References

top
  1. [1] S. ARAKI, On Root Systems and an Infinitesimal Classification of Irreducible Symmetric Spaces (J. of Math. of Osaka City Univ. vol. 13, 1962, p. 1-34). Zbl0123.03002MR27 #3743
  2. [2] N. BOURBAKI, Groupes et Algèbres de Lie, chapter 4-6, Eléments de mathématique, vol. 34, Hermann, Paris, 1968. Zbl0483.22001
  3. [3] HARISH-CHANDRA, Two Theorems on Semi-Simple Lie Groups (Ann. of Math., vol. 83, 1966, p. 74-128). Zbl0199.46403MR33 #2766
  4. [4] HARISH-CHANDRA, Harmonic Analysis on Semi-Simple Lie Groups (Bull. Amer. Math. Soc., vol. 76, 1970, p. 529-551). Zbl0212.15101MR41 #1933
  5. [5] HARISH-CHANDRA, On the Theory of the Eisenstein Integral, in Conference on Harmonic Analysis (Lectures Notes in Mathematics, n° 266, Springer-Verlag, New York, 1972, p. 123-149). Zbl0245.22019MR53 #3200
  6. [6] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962. Zbl0111.18101
  7. [7] A. W. KNAPP, Determination of Intertwining Operators, in Harmonic Analysis on Homogeneous Spaces (Proc. Symp. in Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1973, p. 263-268). Zbl0288.22015MR49 #3032
  8. [8] A. W. KNAPP and E. M. STEIN, Intertwining Operators for Semi-Simple Groups (Ann. of Math., vol. 93, 1971, p. 489-578). Zbl0257.22015MR57 #536
  9. [9] A. W. KNAPP and E. M. STEIN, Singular Integrals and the Principal Series III (Proc. Nat. Acad. Sc. U.S.A., vol. 71, 1974, p. 4622-4624). Zbl0293.22026MR51 #3358
  10. [10] I. SATAKE, On Representations and Compactifications of Symmetric Riemannian Spaces (Ann. of Math., vol. 71, 1960, p. 77-110). Zbl0094.34603MR22 #9546
  11. [11] M. SUGIURA, Conjugate Classes of Cartan Subalgebras in Real Semi-Simple Lie Algebras (J. Math. Soc. Japan, vol. 11, 1959, p. 374-434). Zbl0204.04201MR26 #3827
  12. [12] J. TITS, Classification of Algebraic Semi-Simple Groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Symp. in Pure Math., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, p. 33-62). Zbl0238.20052MR37 #309
  13. [13] G. WARNER, Harmonic Analysis on Semi-Simple Lie Groups, vol. 1, Springer-Verlag, New York, 1972. Zbl0265.22020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.