Weyl group of a cuspidal parabolic

A. W. Knapp

Annales scientifiques de l'École Normale Supérieure (1975)

  • Volume: 8, Issue: 2, page 275-294
  • ISSN: 0012-9593

How to cite

top

Knapp, A. W.. "Weyl group of a cuspidal parabolic." Annales scientifiques de l'École Normale Supérieure 8.2 (1975): 275-294. <http://eudml.org/doc/81957>.

@article{Knapp1975,
author = {Knapp, A. W.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {275-294},
publisher = {Elsevier},
title = {Weyl group of a cuspidal parabolic},
url = {http://eudml.org/doc/81957},
volume = {8},
year = {1975},
}

TY - JOUR
AU - Knapp, A. W.
TI - Weyl group of a cuspidal parabolic
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1975
PB - Elsevier
VL - 8
IS - 2
SP - 275
EP - 294
LA - eng
UR - http://eudml.org/doc/81957
ER -

References

top
  1. [1] S. ARAKI, On Root Systems and an Infinitesimal Classification of Irreducible Symmetric Spaces (J. of Math. of Osaka City Univ. vol. 13, 1962, p. 1-34). Zbl0123.03002MR27 #3743
  2. [2] N. BOURBAKI, Groupes et Algèbres de Lie, chapter 4-6, Eléments de mathématique, vol. 34, Hermann, Paris, 1968. Zbl0483.22001
  3. [3] HARISH-CHANDRA, Two Theorems on Semi-Simple Lie Groups (Ann. of Math., vol. 83, 1966, p. 74-128). Zbl0199.46403MR33 #2766
  4. [4] HARISH-CHANDRA, Harmonic Analysis on Semi-Simple Lie Groups (Bull. Amer. Math. Soc., vol. 76, 1970, p. 529-551). Zbl0212.15101MR41 #1933
  5. [5] HARISH-CHANDRA, On the Theory of the Eisenstein Integral, in Conference on Harmonic Analysis (Lectures Notes in Mathematics, n° 266, Springer-Verlag, New York, 1972, p. 123-149). Zbl0245.22019MR53 #3200
  6. [6] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962. Zbl0111.18101
  7. [7] A. W. KNAPP, Determination of Intertwining Operators, in Harmonic Analysis on Homogeneous Spaces (Proc. Symp. in Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1973, p. 263-268). Zbl0288.22015MR49 #3032
  8. [8] A. W. KNAPP and E. M. STEIN, Intertwining Operators for Semi-Simple Groups (Ann. of Math., vol. 93, 1971, p. 489-578). Zbl0257.22015MR57 #536
  9. [9] A. W. KNAPP and E. M. STEIN, Singular Integrals and the Principal Series III (Proc. Nat. Acad. Sc. U.S.A., vol. 71, 1974, p. 4622-4624). Zbl0293.22026MR51 #3358
  10. [10] I. SATAKE, On Representations and Compactifications of Symmetric Riemannian Spaces (Ann. of Math., vol. 71, 1960, p. 77-110). Zbl0094.34603MR22 #9546
  11. [11] M. SUGIURA, Conjugate Classes of Cartan Subalgebras in Real Semi-Simple Lie Algebras (J. Math. Soc. Japan, vol. 11, 1959, p. 374-434). Zbl0204.04201MR26 #3827
  12. [12] J. TITS, Classification of Algebraic Semi-Simple Groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Symp. in Pure Math., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, p. 33-62). Zbl0238.20052MR37 #309
  13. [13] G. WARNER, Harmonic Analysis on Semi-Simple Lie Groups, vol. 1, Springer-Verlag, New York, 1972. Zbl0265.22020

Citations in EuDML Documents

top
  1. A. W. Knapp, Commutativity of intertwining operators for semisimple groups
  2. Diana Shelstad, Orbital integrals and a family of groups attached to a real reductive group
  3. P. Delorme, Homomorphismes de Harish-Chandra liés aux -types minimaux des séries principales généralisées des groupes de Lie réductifs connexes
  4. M. W. Baldoni-Silva, A. W. Knapp, A construction of unitary representations in parabolic rank two

NotesEmbed ?

top

You must be logged in to post comments.