Homomorphismes de Harish-Chandra liés aux K -types minimaux des séries principales généralisées des groupes de Lie réductifs connexes

P. Delorme

Annales scientifiques de l'École Normale Supérieure (1984)

  • Volume: 17, Issue: 1, page 117-156
  • ISSN: 0012-9593

How to cite

top

Delorme, P.. "Homomorphismes de Harish-Chandra liés aux $K$-types minimaux des séries principales généralisées des groupes de Lie réductifs connexes." Annales scientifiques de l'École Normale Supérieure 17.1 (1984): 117-156. <http://eudml.org/doc/82132>.

@article{Delorme1984,
author = {Delorme, P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Paley-Wiener theorem; connected real Lie group; generalized principal series representations; universal enveloping algebra; symmetric algebra; Harish-Chandra homomorphism; Fourier transforms; transition spaces; minimal K-types; Jacquet modules},
language = {fre},
number = {1},
pages = {117-156},
publisher = {Elsevier},
title = {Homomorphismes de Harish-Chandra liés aux $K$-types minimaux des séries principales généralisées des groupes de Lie réductifs connexes},
url = {http://eudml.org/doc/82132},
volume = {17},
year = {1984},
}

TY - JOUR
AU - Delorme, P.
TI - Homomorphismes de Harish-Chandra liés aux $K$-types minimaux des séries principales généralisées des groupes de Lie réductifs connexes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1984
PB - Elsevier
VL - 17
IS - 1
SP - 117
EP - 156
LA - fre
KW - Paley-Wiener theorem; connected real Lie group; generalized principal series representations; universal enveloping algebra; symmetric algebra; Harish-Chandra homomorphism; Fourier transforms; transition spaces; minimal K-types; Jacquet modules
UR - http://eudml.org/doc/82132
ER -

References

top
  1. [1] W. BALDONI SILVA, The unitary dual of Sp (n, 1), n ≥2 (Duke Math. J., vol. 48, 1981, p. 549-583). Zbl0496.22019
  2. [2] A. BOREL et N. WALLACH, Continuous cohomology, discrete subgroups and representations of reductive groups, Princeton University Press, Princeton, New Jersey, 1980. Zbl0443.22010MR83c:22018
  3. [3] N. BOURBAKI, Algèbre commutative, chapitres 5, 6, Éléments de Mathématiques, XXX Hermann, Paris, 1964. Zbl0205.34302
  4. [4] N. BOURBAKI, Groupes et algèbres de Lie, chapitres 4, 5, 6, Éléments de Mathématiques, XXXIV Hermann, Paris, 1968. Zbl0186.33001
  5. [5] W. CASSELMAN et D. MILIČIČ, Asymptotic behavior of matrix coefficients of admissible representations (Duke Math. J., Vol. 49, 1982, pp. 869-930). Zbl0524.22014MR85a:22024
  6. [6] L. CLOZEL et P. DELORME, Théorème de Paley-Wiener invariant pour les groupes de Lie réductifs (preprint). Zbl0584.22005
  7. [7] P. DELORME, Harish-Chandra homomorphisms and minimal K-types of real semi-simple Lie groups, dans Lecture Notes in Mathematics, n° 880 Springer Verlag, Berlin, Heidelberg, New York, 1981, p. 69-73. Zbl0468.22014
  8. [8] P. DELORME, Théorème de type Paley-Wiener pour les groupes de Lie semi-simples réels avec une seule classe de conjugaison de sous-groupes de Cartan (J. Functional Analysis, vol. 47, 1982, p. 26-63). Zbl0517.22011MR84g:22024
  9. [9] J. DIXMIER, Algèbres enveloppantes, Cahiers scientifiques XXXVII, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR58 #16803a
  10. [10] HARISH-CHANDRA, Harmonic analysis on real reductive groups I (J. Functional Analysis, vol. 19, 1975, p. 104-204). Zbl0315.43002MR53 #3201
  11. [11] HARISH-CHANDRA, Harmonic analysis on real reductive groups III (Ann. of Math., vol. 104, 1976, p. 117-201). Zbl0331.22007MR55 #12875
  12. [12] H. HECHT et W. SCHMID, Characters, asymptotics and n-homology of Harish-Chandra modules (preprint). Zbl0523.22013
  13. [13] A. W. KNAPP, Weyl group of a cuspidal parabolic (Ann. Sci. Ec. Norm. Sup., vol. 8, 1975, p. 275-294). Zbl0305.22010MR51 #13138
  14. [14] A. W. KNAPP et E. M. STEIN, Intertwining operators for semi-simple Lie groups II (Inventiones math., vol. 60, 1980, p. 9-84). Zbl0454.22010MR82a:22018
  15. [15] W. SCHMID, Some properties of square integrable representations of semi-simple Lie groups (Annals of Math., vol. 102, 1975, p. 535-564). Zbl0347.22011MR58 #28303
  16. [16] D. A. VOGAN, The algebraic structure of the representations of semi-simple Lie groups I (Ann. of Math., vol. 109, 1979, p. 1-60). Zbl0424.22010MR81j:22020
  17. [17] D. A. VOGAN, The algebraic structure of the representations of semi-simple Lie groups II, (preprint). 
  18. [18] D. A. VOGAN, Representations of real reductive groups, Progress in Math. 15, Birkhöuser, Boston, Bösel, Stüttgart, 1981. Zbl0469.22012MR83c:22022
  19. [19] G. WARNER, Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, Berlin, Heidelberg, New York, 1972. Zbl0265.22020
  20. [S] SERRE, Algèbre locale et Multiplicités, Lecture Notes in Math., n° 11 (3e édition, 1975). Zbl0296.13018MR34 #1352
  21. [Z-S] ZARISKI and SAMUEL, Commutative Algebra, Van Nostrand, 1962 (volume II). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.