Commutativity of intertwining operators for semisimple groups
Compositio Mathematica (1982)
- Volume: 46, Issue: 1, page 33-84
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKnapp, A. W.. "Commutativity of intertwining operators for semisimple groups." Compositio Mathematica 46.1 (1982): 33-84. <http://eudml.org/doc/89546>.
@article{Knapp1982,
author = {Knapp, A. W.},
journal = {Compositio Mathematica},
keywords = {real reductive group; induced representation; intertwining operator; commuting algebra},
language = {eng},
number = {1},
pages = {33-84},
publisher = {Martinus Nijhoff Publishers},
title = {Commutativity of intertwining operators for semisimple groups},
url = {http://eudml.org/doc/89546},
volume = {46},
year = {1982},
}
TY - JOUR
AU - Knapp, A. W.
TI - Commutativity of intertwining operators for semisimple groups
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 46
IS - 1
SP - 33
EP - 84
LA - eng
KW - real reductive group; induced representation; intertwining operator; commuting algebra
UR - http://eudml.org/doc/89546
ER -
References
top- [1] N. Bourbaki: Éléments de mathématique XXXIV, Groupes et algèbres de Lie. Hermann, Paris, 1968. Zbl0186.33001MR647314
- [2] Harish-Chandra: Discrete series for semisimple Lie groups II. Acta Math.116 (1966) 1-111. Zbl0199.20102MR219666
- [3] Harish-Chandra: On the theory of the Eisenstein integral, Conference on Harmonic Analysis, Lecture Notes in Math.266 (1972) 123-149, Springer-Verlag, Berlin-Heidelberg-New York. Zbl0245.22019MR399355
- [4] Harish-Chandra: Harmonic analysis on real reductive groups I. J. Functional Anal.19 (1975) 104-204. Zbl0315.43002MR399356
- [5] Harish-Chandra: Harmonic analysis on real reductive groups III. Annals of Math.104 (1976) 117-201. Zbl0331.22007MR439994
- [6] S. Helgason: Differential Geometry and Symmetric Spaces. Academic Press, New York, 1962. Zbl0111.18101MR145455
- [7] N. Jacobson: Lie Algebras. Interscience Publishers, New York, 1962. Zbl0121.27504MR143793
- [8] A.W. Knapp: Determination of intertwining operators. Proc. Symposia Pure Math.26 (1973) 263-268, Amer. Math. Soc., Providence. Zbl0288.22015MR338266
- [9] A.W. Knapp: Commutativity of intertwining operators. Bull. Amer. Math. Soc.79 (1973) 1016-1018. Zbl0269.22012MR333074
- [10] A.W. Knapp: Commutativity of intertwining operators II. Bull. Amer. Math. Soc.82 (1976) 271-273. Zbl0333.22006MR407203
- [11] A.W. Knapp: Weyl group of a cuspidal parabolic. Annales Scientifiques de l'École Normale Supérieure8 (1975) 275-294. Zbl0305.22010MR376963
- [12] A.W. Knapp and E.M. Stein: Intertwining operators for semisimple groups. Annals of Math.93 (1971) 489-578. Zbl0257.22015MR460543
- [13] A.W. Knapp and E.M. Stein: Intertwining operators for semisimple groups II. Inventiones Math.60 (1980) 9-84. Zbl0454.22010MR582703
- [14] G.W. Mackey: On induced representations of groups. Amer. J. Math.73 (1951) 576-592. Zbl0045.30305MR42420
- [15] W. Schmid: Some properties of square integrable representations of semisimple Lie groups. Annals of Math.102 (1975) 535-564. Zbl0347.22011MR579165
- [16] D.A. Vogan: Lie algebra cohomology and the representations of semisimple Lie groups. Thesis, Massachusetts Institute of Technology, 1976.
Citations in EuDML Documents
top- M. W. Baldoni-Silva, A. W. Knapp, A construction of unitary representations in parabolic rank two
- Laurent Clozel, Patrick Delorme, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II
- E. P. van den Ban, The principal series for a reductive symmetric space. I. -fixed distribution vectors
- Hisayosi Matumoto, -Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.