Une obstruction pour scinder une équivalence d’homotopie en dimension 3

Harrie Hendriks

Annales scientifiques de l'École Normale Supérieure (1976)

  • Volume: 9, Issue: 3, page 437-467
  • ISSN: 0012-9593

How to cite

top

Hendriks, Harrie. "Une obstruction pour scinder une équivalence d’homotopie en dimension $3$." Annales scientifiques de l'École Normale Supérieure 9.3 (1976): 437-467. <http://eudml.org/doc/81983>.

@article{Hendriks1976,
author = {Hendriks, Harrie},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {3},
pages = {437-467},
publisher = {Elsevier},
title = {Une obstruction pour scinder une équivalence d’homotopie en dimension $3$},
url = {http://eudml.org/doc/81983},
volume = {9},
year = {1976},
}

TY - JOUR
AU - Hendriks, Harrie
TI - Une obstruction pour scinder une équivalence d’homotopie en dimension $3$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 3
SP - 437
EP - 467
LA - fre
UR - http://eudml.org/doc/81983
ER -

References

top
  1. [C 1] S. E. CAPPELL, Splitting obstructions for Hermitian forms and manifolds with Z2 ⊂ π1 (Bull. Amer. Math. Soc., vol. 79, 1973, p. 909-913). Zbl0272.57016MR49 #3987
  2. [C 2] S. E. CAPPELL, Unitary nilpotent groups and Hermitian K-theory, I (Bull. Amer. Math. Soc., vol. 80, 1974, p. 1117-1122). Zbl0322.57020MR50 #11274
  3. [C 3] S. E. CAPPELL, Manifolds with fundamental group a generalized free product, I (Bull. Amer. Math. Soc., vol. 80, 1974, p. 1193-1198). Zbl0341.57007MR50 #8562
  4. [E] D. B. A. EPSTEIN, Projective planes in 3-manifolds (Proc. London Math. Soc., (3), 11, 1961, p. 469-484). Zbl0111.18801MR27 #2968
  5. [H 1] H. HENDRIKS, Applications de la théorie d'obstruction en dimension 3 (C. R. Acad. Sc., Paris, t. 276, 1973, p. A 1101-1104.) Zbl0257.57001MR47 #7744
  6. [H 2] H. HENDRIKS, Applications de la théorie d'obstruction en dimension 3 (Thèse, Publ. math. d'Orsay, n° 133-7535, 1975). MR55 #6432
  7. [H 3] G. HIGMAN, The units of group-rings (Proc. London Math. Soc., vol. 46, 1940, p. 231-248). Zbl0025.24302MR2,5bJFM66.0104.04
  8. [H 4] M. W. HIRSCH, Immersions of manifolds (Trans. Amer. Soc., vol. 93, 1959, p. 242-276). Zbl0113.17202MR22 #9980
  9. [HL 1] H. HENDRIKS et F. LAUDENBACH, Scindement d'une équivalence d'homotopie en dimension 3 (C. R. Acad. Sc., Paris, t. 276, 1973, p. A 1275-1278). Zbl0255.57004MR47 #7745
  10. [HL 2] H. HENDRIKS et F. LAUDENBACH, Scindement d'une équivalence d'homotopie en dimension 3 (Ann. scient. Éc. Norm. Sup., t. 7, 1974, p. 203-218). Zbl0303.57003MR51 #1827
  11. [L] F. LAUDENBACH, Topologie de la dimension 3 : homotopie et isotopie (Astérisque, vol. 12, 1974). Zbl0293.57004MR50 #8527
  12. [S 1] J. STALLINGS, Whitehead torsion of free products (Ann. of Math., vol. 82, 1965, p. 354-363). Zbl0132.26804MR31 #3518
  13. [S 2] J. STALLINGS, Group theory and three-dimensional manifolds, Yale University Press, 1971. Zbl0241.57001
  14. [S 3] G. A. SWARUP, On a theorem of C. B. Thomas (J. London Math. Soc., vol. 8, 1974, p. 13-21). Zbl0281.57003MR49 #6225
  15. [S 4] G. A. SWARUP, Homotopy type of closed 3-manifolds, preprint, Tata Institute, 1974. 
  16. [S 5] G. A. SWARUP, On embedded spheres in 3-manifolds II, preprint, Tata Institute, 1974. 
  17. [T] C. B. THOMAS, The oriented homotopy type of compact 3-manifolds (Proc. London Math. Soc., vol. 19, 1969, p. 31-44). Zbl0167.21502MR40 #2088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.