Applications de la théorie d'obstruction en dimension 3

Harrie Hendriks

Mémoires de la Société Mathématique de France (1977)

  • Volume: 53, page 81-196
  • ISSN: 0249-633X

How to cite

top

Hendriks, Harrie. "Applications de la théorie d'obstruction en dimension 3." Mémoires de la Société Mathématique de France 53 (1977): 81-196. <http://eudml.org/doc/94775>.

@article{Hendriks1977,
author = {Hendriks, Harrie},
journal = {Mémoires de la Société Mathématique de France},
keywords = {homotopy classes of embedded 2-spheres; maps between 3-manifolds of the same degree; compact connected 3-manifold; free subgroup of finite index; obstruction theory},
language = {fre},
pages = {81-196},
publisher = {Société mathématique de France},
title = {Applications de la théorie d'obstruction en dimension 3},
url = {http://eudml.org/doc/94775},
volume = {53},
year = {1977},
}

TY - JOUR
AU - Hendriks, Harrie
TI - Applications de la théorie d'obstruction en dimension 3
JO - Mémoires de la Société Mathématique de France
PY - 1977
PB - Société mathématique de France
VL - 53
SP - 81
EP - 196
LA - fre
KW - homotopy classes of embedded 2-spheres; maps between 3-manifolds of the same degree; compact connected 3-manifold; free subgroup of finite index; obstruction theory
UR - http://eudml.org/doc/94775
ER -

References

top
  1. [E] EPSTEIN (D. B. A.). — Projective planes in 3-manifolds, Proc. London math. Soc., t. 11, 1961, p. 469-484. Zbl0111.18801MR27 #2968
  2. [H1] HENDRIKS (H.). — Applications de la théorie d'obstruction en dimension 3, C. R. Acad. Sc. Paris, t. 276, 1973, Série A, p. 1101-1104. Zbl0257.57001MR47 #7744
  3. [H2] HENDRIKS (H.), LAUDENBACH (F.). — Scindement d'une équivalence d'homotopie en dimension 3, Ann. scient. Ec. Norm. Sup., Série 4, t. 7, 1974, p. 203-218. Zbl0303.57003MR51 #1827
  4. [H3] HENDRIKS (H.). — Une obstruction pour scinder une équivalence d'homotopie en dimension 3, Ann. scient. Ec. Norm. Sup. (à paraître). Zbl0335.57005
  5. [H4] HENDRIKS (H.). — Obstruction theory in 3-dimensional topology: an extension theorem, Report Mathematisch Institut, Nijmegen. Zbl0366.57002
  6. [H5] HILTON (P. J.). — On the homotopy groups of the union of spheres, J. London math. Soc., t. 30, 1955, p. 154-172. Zbl0064.17301MR16,847d
  7. [H6] HOPF (H.). — Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Annalen, t. 104, 1931, p. 637-665. Zbl0001.40703JFM57.0725.01
  8. [H7] HU (S.). — Homotopy theory. — New York, Academic Press, 1959 (Pure and applied Mathematics, Academic Press, 8). Zbl0088.38803MR21 #5186
  9. [L] LAUDENBACH (F.). — Topologie de la dimension trois: homotopie et isotopie, Astérisque 12, 1974, 152 p. Zbl0293.57004MR50 #8527
  10. [M] MILNOR (J.). — Groups which act on Sn without fixed points, Amer. J. Math., t. 79, 1957, p. 623-630. Zbl0078.16304MR19,761d
  11. [O] OLUM (P.). — Fibre bundles and obstructions: The theory of obstructions, "Proceedings of the international congress of mathematicians [1950. Cambridge]", p. 363-370. — Providence, American mathematical Society, 1952. Zbl0049.12901
  12. [P] PONTRJAGIN (L.). — A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Mat. Sbornik (Recueil math.), N. S., t. 9(51), 1941, p. 331-363. Zbl0025.09302MR3,60gJFM67.0736.01
  13. [R]ROW (W.). — Irreductible 3-manifolds whose orientable covers are note prime, Proc. Amer. math. Soc., t. 34, 1972, p. 541-545. Zbl0248.57001MR45 #6006
  14. [S1] SERRE (J.-P.). — Groupes d'homotopie des bouquets de sphères, Séminaire Cartan: Algèbres d'Eilenberg-Maclane et homotopie, 7e année, 1954/1955, n° 20, 7 p. 
  15. [S2] SPANIER (E. H.). — Algebraic topology. — New York, Mc Graw-Hill Company, 1966 (Mc Graw-Hill Series in higher Mathematics). Zbl0145.43303MR35 #1007
  16. [S3] SPECKER (E.). — Die erste Cohomologiegruppe von Uberlagerungen und Homotopie-Eigenschaften drei-dimensionaler Mannigfaltigkeiten, Comment. Math. Helvet., t. 23, 1949, p. 303-333. Zbl0036.12803MR11,451a
  17. [S4] STALLINGS (J.). — Group theory and three-dimensional manifolds. — New Heaven, Yale University Press, 1971 (Yale mathematical Monographs, 4). Zbl0241.57001
  18. [S5] SWARUP (G. A.). — On embedded spheres in 3-manifolds, Math. Annalen, t. 203, 1973, p. 89-102. Zbl0241.55017MR48 #7252
  19. [S6] SWARUP (G. A.). — Projective planes in irreductible 3-manifolds, Math. Z., t. 132, 1973, p. 305-317. Zbl0249.57003MR48 #1244
  20. [S7] SWARUP (G. A.). — On a theorem of C. B. Thomas, J. London math. Soc., t. 8, 1974, p. 13-21. Zbl0281.57003MR49 #6225
  21. [T] THOMAS (C. B.). — The oriented homotopy type of compact 3-manifolds, Proc. London math. Soc., t. 19, 1969, p. 31-44. Zbl0167.21502MR40 #2088
  22. [W] WOLF (J. A.). — Spaces of constant curvature. — New York, McGraw-Hill Company, 1967 (McGraw-Hill Series in higher Mathematics). Zbl0162.53304MR36 #829

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.