Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II

Laurent Clozel; Patrick Delorme

Annales scientifiques de l'École Normale Supérieure (1990)

  • Volume: 23, Issue: 2, page 193-228
  • ISSN: 0012-9593

How to cite

top

Clozel, Laurent, and Delorme, Patrick. "Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II." Annales scientifiques de l'École Normale Supérieure 23.2 (1990): 193-228. <http://eudml.org/doc/82271>.

@article{Clozel1990,
author = {Clozel, Laurent, Delorme, Patrick},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {reductive Lie group; set of real points; reductive connected algebraic group; maximal compact subgroup; cuspidal parabolic subgroup; discrete series representations; right action; traces; basic representations; surjectivity of Harish-Chandra homomorphisms; limits of discrete series},
language = {fre},
number = {2},
pages = {193-228},
publisher = {Elsevier},
title = {Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II},
url = {http://eudml.org/doc/82271},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Clozel, Laurent
AU - Delorme, Patrick
TI - Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 2
SP - 193
EP - 228
LA - fre
KW - reductive Lie group; set of real points; reductive connected algebraic group; maximal compact subgroup; cuspidal parabolic subgroup; discrete series representations; right action; traces; basic representations; surjectivity of Harish-Chandra homomorphisms; limits of discrete series
UR - http://eudml.org/doc/82271
ER -

References

top
  1. [1] J. ARTHUR, The Trace Formula in Invariant Form (Ann. Math., vol. 114, 1981, p. 1-74). Zbl0495.22006MR84a:10031
  2. [2] M. ATIYAH et W. SCHMID, A Geometric Construction of the Discrete Series for Semi-simple Lie Groups (Inv. Math., 42, 1977, p. 1-62). Zbl0373.22001MR57 #3310
  3. [3] D. BARBASCH et H. MOSCOVICI, L2-Index and the Selberg trace Formula (J. Funct. Anal., vol. 53, (2), 1983, p. 151-201). Zbl0537.58039MR85j:58137
  4. [4] J. BERNSTEIN, P. DELIGNE et D. KAZHDAN, Trace Paley-Wiener Theorem for Reductive p-adic groups (J. Anal. Math., vol. 47, 1986, p. 180-192). Zbl0634.22011MR88g:22016
  5. [5] A. BOREL et N. WALLACH, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups, Princeton Univ. Press, 1980. Zbl0443.22010MR83c:22018
  6. [6] L. CLOZEL, On Limit Multiplicities of Discrete Series Representations in Spaces of Automorphic Forms (Inv. Math., vol. 83, 1986, p. 265-284). Zbl0582.22012MR87g:22012
  7. [7] L. CLOZEL et P. DELORME, Le Théorème de Paley-Wiener invariant pour les groupes de Lie réductifs (Inv. Math., vol. 77, 1984, p. 427-453). Zbl0584.22005MR86b:22015
  8. [8] M. COWLING, On the Paley-Wiener theorem (Inv. Math., vol. 83, 1986, p. 403-404). Zbl0591.43007MR87i:22025
  9. [9] P. DELORME, Homomorphismes de Harish-Chandra liés aux K-types minimaux des séries principales généralisées des groupes réductifs réels connexes (Ann. Sci. Ec. Norm. Sup., vol. 17, 1984, p. 117-156). Zbl0582.22009MR86b:22023
  10. [10] J. DIXMIER, Algèbres enveloppantes, Cahiers scientifiques, t. XXXVII, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR58 #16803a
  11. [11] L. EHRENPREIS, Fourier Analysis in Several Complex Variables, Wiley-Interscience Publishers, 1970. Zbl0195.10401MR44 #3066
  12. [12] S. HELGASON, Fundamental Solutions of Invariant Differential Operators on Symmetric Spaces (Am. J. Math., vol. 86, 1964, p. 565-601). Zbl0178.17001MR29 #2323
  13. [13] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978. Zbl0451.53038MR80k:53081
  14. [14] J. E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Springer, 1972. Zbl0254.17004MR48 #2197
  15. [15] A. KNAPP, Commutativity of Intertwining Operators for Semi-simple Groups, (Compositio Math., vol. 46, 1982, p. 33-84). Zbl0488.22027MR83i:22022
  16. [16] A. KNAPP et E. STEIN, Intertwining Operators for Semi-simple Groups II (Inv. Math., vol. 60, 1980, p. 9-84). Zbl0454.22010MR82a:22018
  17. [17] A. KNAPP et G. ZUCKERMAN, Classification of Irreducible Tempred Representations of Semi-simple Groups (Ann. Math., vol. 116, 1982, p. 389-501). Zbl0516.22011MR84h:22034a
  18. [18] R. P. LANGLANDS, On the Functional Equations Satisfied by Eisenstein Series (Springer Lect. Notes, vol. 544, 1976). Zbl0332.10018MR58 #28319
  19. [19] R. P. LANGLANDS, On the Classification of Irreducible Representations of Real Algebraic Groups [Notes, I.A.S. (Princeton), 1973]. Zbl0741.22009
  20. [20] R. PARTHASARATHY, Dirac Operators and the Discrete Series (Ann. Math., vol. 93, 1972, p. 1-42). Zbl0249.22003MR47 #6945
  21. [21] M. RAÏS, Groupes linéaires compacts et fonctions C∞ covariantes (Bull. Sci. Math., vol. 107, 1983, p. 93-111). Zbl0518.22010MR85d:22028
  22. [22] P. C. TROMBI, The tempered spectrum of a real semi-simple Lie group (Am. J. Math., vol. 99, 1977, p. 57-75). Zbl0373.22007MR56 #12182
  23. [23] P. C. TROMBI, Invariant harmonic analysis on split rank one groups with applications (Pac. J. Math., vol. 101, 1982, p. 223-246). Zbl0572.22005MR84k:22015
  24. [24] D. VOGAN, The Algebraic Structure of the Representations of Semi-simple Lie Groups I (Ann. Math., vol. 109, 1979, p. 1-60). Zbl0424.22010MR81j:22020
  25. [25] D. VOGAN, The Algebraic Structure of the Representations of Semi-simple Lie Groups II, notes non publiées. 
  26. [26] D. VOGAN, Representations of Real Reductive Lie Groups, Birkhaüser, 1981. Zbl0469.22012MR83c:22022
  27. [27] D. VOGAN et G. ZUCKERMAN, Unitary Representations with Non-zero Cohomology (Compositio Math., vol. 53, 1984, p. 51-90). Zbl0692.22008MR86k:22040
  28. [28] L. CLOZEL et P. DELORME, Sur le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs réels (C. R. Acad. Sci. Paris, t. 300, série I, n° 11, 1985, p. 331-333). Zbl0593.22009MR86e:22014
  29. [29] L. CLOZEL et P. DELORME, Pseudo-coefficients et cohomologie des groupes réductifs réels (C. R. Acad. Sci. Paris, t. 300, série I, n° 12, 1985, p. 385-387). Zbl0593.22010MR87e:22032
  30. [30] HARISH-CHANDRA, Harmonic Analysis on real reductive group III (Ann. Math., vol. 104, 1976, p. 117-201). Zbl0331.22007MR55 #12875
  31. [31] A. KNAPP et G. ZUCKERMAN, Normalizing Factors, Tempered Representations, and L-groups (Proc. Symp. Pure Math., vol. 33, n° I, 1979, p. 93-105). Zbl0414.22017MR80m:22021
  32. [32] R. P. LANGLANDS, Notes on the Knapp-Zuckerman theory, Institute for Advanced Study, Princeton, 1976. 
  33. [33] D. SHELSTAD, L-Indistinguishability for Real Groups (Math. Ann., vol. 259, 1982, p. 385-430). Zbl0506.22014MR84c:22017
  34. [34] D. SHELSTAD, Orbital integrals, Endoscopic groups and L-Indistinguishability for Real Groups, in Journées Automorphes, Publ. Math., Univ. Paris-VII, Paris, p. 135-219 (s.d.). Zbl0529.22007MR85i:22019

Citations in EuDML Documents

top
  1. P. Delorme, Théorème de Paley-Wiener invariant tordu pour le changement de base /
  2. Patrick Delorme, Inversion des intégrales orbitales sur certains espaces symétriques réductifs
  3. Wen-Wei Li, La formule des traces pour les revêtements de groupes réductifs connexes. IV. Distributions invariantes
  4. Abderrazak Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs
  5. A. Borel, J.-P. Labesse, J. Schwermer, On the cuspidal cohomology of S -arithmetic subgroups of reductive groups over number fields
  6. Laurent Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de G L ( n )

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.