Homogeneous Kähler manifolds admitting a transitive solvable group of automorphisms

Josef Dorfmeister

Annales scientifiques de l'École Normale Supérieure (1985)

  • Volume: 18, Issue: 1, page 143-180
  • ISSN: 0012-9593

How to cite

top

Dorfmeister, Josef. "Homogeneous Kähler manifolds admitting a transitive solvable group of automorphisms." Annales scientifiques de l'École Normale Supérieure 18.1 (1985): 143-180. <http://eudml.org/doc/82153>.

@article{Dorfmeister1985,
author = {Dorfmeister, Josef},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {homogeneous Kähler manifolds; transitive solvable group of automorphisms; holomorphic fibering; bounded homogeneous domain},
language = {eng},
number = {1},
pages = {143-180},
publisher = {Elsevier},
title = {Homogeneous Kähler manifolds admitting a transitive solvable group of automorphisms},
url = {http://eudml.org/doc/82153},
volume = {18},
year = {1985},
}

TY - JOUR
AU - Dorfmeister, Josef
TI - Homogeneous Kähler manifolds admitting a transitive solvable group of automorphisms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1985
PB - Elsevier
VL - 18
IS - 1
SP - 143
EP - 180
LA - eng
KW - homogeneous Kähler manifolds; transitive solvable group of automorphisms; holomorphic fibering; bounded homogeneous domain
UR - http://eudml.org/doc/82153
ER -

References

top
  1. [1] R. AZENCOTT and E. N. WILSON, Homogeneous Manifolds with Negative Curvature, I (Trans. Amer. Math. Soc., Vol. 215, 1976, pp. 373-362). Zbl0293.53017MR52 #15308
  2. [2] R. AZENCOTT and E. N. WILSON, Homogeneous Manifolds with Negative Curvature, Part II (Amer. Math. Soc. Memoirs, Vol. 178, 1976). Zbl0355.53026
  3. [3] C. CHEVALLEYThéorie des groupes de Lie, Hermann, Paris, 1968. Zbl0186.33104
  4. [4] J. DORFMEISTER, Simply Transitive Groups and Köhler Structures on Bounded Homogeneous Domains (to appear in Trans. Amer. Math. Soc.). 
  5. [5] J. DORFMEISTER, Quasi-Clans (Abh. Math. Seminar Univ. Hamburg, Vol. 50, 1980, pp. 178-187). Zbl0419.17002MR82i:17012
  6. [6] J. DORFMEISTER and M. KOECHER, Regulöre Kegel (Jber. Deutsch. Math.-Verein., Vol. 81, 1979, pp. 109-151). Zbl0418.17013MR80i:17019
  7. [7] S. G. GINDIKIN, I. I. PIATETSKII-SHAPIRO and E. B. VINBERG, Homogeneous Köhler Manifolds, C.I.M.E., Edizione Cremonese, Roma, 1967. Zbl0183.35401
  8. [8] S. G. GINDIKIN and E. B. VINBERG, Köhlerian Manifolds Admitting a Transitive Solvable Automorphism Group (Math. Sb., Vol. 74, 1967, pp. 333-351). Zbl0172.37803MR36 #7161
  9. [9] H. GRAUERT, Analytische Faserungen über holomorph-vollstöndigen Röumen (Math. Ann., Vol. 135, 1958, pp. 263-273). Zbl0081.07401MR20 #4661
  10. [10] A. KODAMA and H. SHIMA, Characterizations of Homogeneous Bounded Domains Tsukuba J. Math., Vol. 7, 1983, pp. 79-86. Zbl0525.32030MR85d:32060
  11. [11] I. I. PIATETSKII-SHAPIRO, Bounded Homogeneous Domains in n-Dimensional Complex Space (Amer. Math. Soc. Translations, Vol. 43, 1964, pp. 299-320). Zbl0154.08401
  12. [12] I. I. PIATETSKII-SHAPIRO, Automorphic Functions and the Geometry of Classical Domains, Gordon and Breach, New York, London, Paris, 1969. Zbl0196.09901
  13. [13] H. SHIMA, Homogeneous Köhlerian Manifolds. Japan J. Math., Vol. 10, 1984, pp. 71-98. Zbl0587.32043MR88e:32053
  14. [14] S. SHIMIZU, Homogeneous Köhler Manifolds of Complex Dimension Two (Tôhoku Math. J., Vol. 34, 1982, pp. 53-63). Zbl0548.32006MR84h:32044
  15. [15] E. B. VINBERG, The Theory of Homogeneous Cones (Trans. Moscow Math. Soc., Vol. 12, 1963, pp. 340-403). Zbl0138.43301MR28 #1637

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.