Basic covariant differential operators on hermitian symmetric spaces
Annales scientifiques de l'École Normale Supérieure (1985)
- Volume: 18, Issue: 3, page 421-436
- ISSN: 0012-9593
Access Full Article
topHow to cite
topJakobsen, Hans Plesner. "Basic covariant differential operators on hermitian symmetric spaces." Annales scientifiques de l'École Normale Supérieure 18.3 (1985): 421-436. <http://eudml.org/doc/82163>.
@article{Jakobsen1985,
author = {Jakobsen, Hans Plesner},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hermitian symmetric space; holomorphically induced representations; covariant differential operator; generalized Verma modules},
language = {eng},
number = {3},
pages = {421-436},
publisher = {Elsevier},
title = {Basic covariant differential operators on hermitian symmetric spaces},
url = {http://eudml.org/doc/82163},
volume = {18},
year = {1985},
}
TY - JOUR
AU - Jakobsen, Hans Plesner
TI - Basic covariant differential operators on hermitian symmetric spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1985
PB - Elsevier
VL - 18
IS - 3
SP - 421
EP - 436
LA - eng
KW - Hermitian symmetric space; holomorphically induced representations; covariant differential operator; generalized Verma modules
UR - http://eudml.org/doc/82163
ER -
References
top- [1] I. N. BERNSTEIN, I. M. GELFAND and S. I. GELFAND, Differential Operators on the Base Affine Space and a Study of g-Modules, in Lie Groups and Their Representations, I. M. GELFAND, Ed., Adam Hilger, London, 1975. Zbl0338.58019MR58 #28285
- [2] B. D. BOE, Homomorphisms between Generalized Verma Modules (Dissertation, Yale University, 1982).
- [3] B. D. BOE and D. H. COLLINGWOOD, A Comparison Theory for the Structure of Induced Representations, Preprint, 1983.
- [4] V. V. DEODHAR, Some Characterizations of the Bruhat Ordering on a Coxeter Group and Characterization of the Relative Möbius Function (Invent. Math., Vol. 39, 1977, pp. 187-198.). Zbl0333.20041MR435249
- [5] M. HARRIS and H. P. JAKOBSEN, Singular Holomorphic Representations and Singular Modular Forms (Math. Ann., vol. 259, 1982, pp. 227-244. Zbl0466.32017MR656663
- [6] M. HARRIS and H. P. JAKOBSEN, Covariant Differential Operators, in Group Theoretical Methods in Physics (Proceedings, Istanbul, 1982, Lecture Notes in Physics, Vol. 180, Springer, Berlin-Heidelberg-New York-Tokyo, 1983.). Zbl0529.22015MR724940
- [7] H. P. JAKOBSEN and M. VERGNE, Wave and Dirac Operators and Representations of the Conformal Group (J. Funct. Anal., Vol. 24, 1977, pp. 52-106). Zbl0361.22012MR439995
- [8] H. P. JAKOBSEN and M. VERGNE, Restrictions and Expansions of Holomorphic Representations (J. Funct. Anal., Vol. 34, 1979, pp. 29-53). Zbl0433.22011MR551108
- [9] H. P. JAKOBSEN, Intertwining Differential Operators for Mp(n, ℝ) and SU (n, n) (Trans. Amer. Math. Soc., Vol. 246, 1978, pp. 311-337). Zbl0403.22010MR515541
- [10] H. P. JAKOBSEN, The Last Possible Place of Unitarity for Certain Highest Weight Modules (Math. Ann., Vol. 256, 1981, pp. 439-447). Zbl0478.22007MR628225
- [11] H. P. JAKOBSEN, Hermitian Symmetric Spaces and their Unitary Highest Weight Modules (J. Funct. Anal., Vol. 52, 1983, pp. 385-412). Zbl0517.22014MR712588
- [12] G. D. JAMES, The Representation Theory of the Symmetric Groups (Lecture Notes in Math., Vol. 682, Springer ; Berlin-Heidelberg-New York, 1978). Zbl0393.20009
- [13] J. LEPOWSKY, A Generalization of the Bernstein-Gelfand-Gelfand Resolution (J. Alg., Vol. 49, 1977, pp. 496-511). Zbl0381.17006MR476813
- [14] J. LEPOWSKY, Conical Vectors in Induced Modules (Trans. Amer. Math. Soc., Vol. 208, 1975, pp. 219-272). Zbl0311.17002MR376786
- [15] J. LEPOWSKY, Existence of Conical Vectors in Induced Modules (Ann. of Math., Vol. 102, 1975, pp. 17-40). Zbl0314.17006MR379613
- [16] J. LEPOWSKY, On the Uniqueness of Conical Vectors (Proc. Amer. Math. Soc., Vol. 57, 1976, pp. 217-220). Zbl0342.17005MR409576
- [17] J. LEPOWSKY, Uniqueness of Embeddings of Certain Induced Modules (Proc. Amer. Math. Soc., Vol. 56, 1976, pp. 55-58). Zbl0335.17004MR399195
- [18] H. ROSSI and M. VERGNE, Analytic Continuation of the Holomorphic Discrete Series of a Semi-Simple Lie Group (Acta Math., Vol. 136, 1976, pp. 1-59). Zbl0356.32020MR480883
- [19] W. SCHMID, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Röumen (Invent. Math., Vol. 9, 1969, pp. 61-80). Zbl0219.32013MR259164
- [20] D. VOGAN, Representations of Real Reductive Lie Groups, Birkhöuser ; Boston-Basel-Stuttgart, 1981. Zbl0469.22012MR632407
- [21] N. WALLACH, Analytic Continuation of the Discrete Series II (Trans. Amer. Math. Soc., Vol. 251, 1979, pp. 19-37). Zbl0419.22018MR531967
- [22] B. ØRSTED, Composition Series for Analytic Continuations of Holomorphic Discrete Series Representations of SU (n, n) (Trans. Amer. Math. Soc., Vol. 260, 1980, pp. 563-573). Zbl0439.22017
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.