Basic covariant differential operators on hermitian symmetric spaces

Hans Plesner Jakobsen

Annales scientifiques de l'École Normale Supérieure (1985)

  • Volume: 18, Issue: 3, page 421-436
  • ISSN: 0012-9593

How to cite

top

Jakobsen, Hans Plesner. "Basic covariant differential operators on hermitian symmetric spaces." Annales scientifiques de l'École Normale Supérieure 18.3 (1985): 421-436. <http://eudml.org/doc/82163>.

@article{Jakobsen1985,
author = {Jakobsen, Hans Plesner},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hermitian symmetric space; holomorphically induced representations; covariant differential operator; generalized Verma modules},
language = {eng},
number = {3},
pages = {421-436},
publisher = {Elsevier},
title = {Basic covariant differential operators on hermitian symmetric spaces},
url = {http://eudml.org/doc/82163},
volume = {18},
year = {1985},
}

TY - JOUR
AU - Jakobsen, Hans Plesner
TI - Basic covariant differential operators on hermitian symmetric spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1985
PB - Elsevier
VL - 18
IS - 3
SP - 421
EP - 436
LA - eng
KW - Hermitian symmetric space; holomorphically induced representations; covariant differential operator; generalized Verma modules
UR - http://eudml.org/doc/82163
ER -

References

top
  1. [1] I. N. BERNSTEIN, I. M. GELFAND and S. I. GELFAND, Differential Operators on the Base Affine Space and a Study of g-Modules, in Lie Groups and Their Representations, I. M. GELFAND, Ed., Adam Hilger, London, 1975. Zbl0338.58019MR58 #28285
  2. [2] B. D. BOE, Homomorphisms between Generalized Verma Modules (Dissertation, Yale University, 1982). 
  3. [3] B. D. BOE and D. H. COLLINGWOOD, A Comparison Theory for the Structure of Induced Representations, Preprint, 1983. 
  4. [4] V. V. DEODHAR, Some Characterizations of the Bruhat Ordering on a Coxeter Group and Characterization of the Relative Möbius Function (Invent. Math., Vol. 39, 1977, pp. 187-198.). Zbl0333.20041MR435249
  5. [5] M. HARRIS and H. P. JAKOBSEN, Singular Holomorphic Representations and Singular Modular Forms (Math. Ann., vol. 259, 1982, pp. 227-244. Zbl0466.32017MR656663
  6. [6] M. HARRIS and H. P. JAKOBSEN, Covariant Differential Operators, in Group Theoretical Methods in Physics (Proceedings, Istanbul, 1982, Lecture Notes in Physics, Vol. 180, Springer, Berlin-Heidelberg-New York-Tokyo, 1983.). Zbl0529.22015MR724940
  7. [7] H. P. JAKOBSEN and M. VERGNE, Wave and Dirac Operators and Representations of the Conformal Group (J. Funct. Anal., Vol. 24, 1977, pp. 52-106). Zbl0361.22012MR439995
  8. [8] H. P. JAKOBSEN and M. VERGNE, Restrictions and Expansions of Holomorphic Representations (J. Funct. Anal., Vol. 34, 1979, pp. 29-53). Zbl0433.22011MR551108
  9. [9] H. P. JAKOBSEN, Intertwining Differential Operators for Mp(n, ℝ) and SU (n, n) (Trans. Amer. Math. Soc., Vol. 246, 1978, pp. 311-337). Zbl0403.22010MR515541
  10. [10] H. P. JAKOBSEN, The Last Possible Place of Unitarity for Certain Highest Weight Modules (Math. Ann., Vol. 256, 1981, pp. 439-447). Zbl0478.22007MR628225
  11. [11] H. P. JAKOBSEN, Hermitian Symmetric Spaces and their Unitary Highest Weight Modules (J. Funct. Anal., Vol. 52, 1983, pp. 385-412). Zbl0517.22014MR712588
  12. [12] G. D. JAMES, The Representation Theory of the Symmetric Groups (Lecture Notes in Math., Vol. 682, Springer ; Berlin-Heidelberg-New York, 1978). Zbl0393.20009
  13. [13] J. LEPOWSKY, A Generalization of the Bernstein-Gelfand-Gelfand Resolution (J. Alg., Vol. 49, 1977, pp. 496-511). Zbl0381.17006MR476813
  14. [14] J. LEPOWSKY, Conical Vectors in Induced Modules (Trans. Amer. Math. Soc., Vol. 208, 1975, pp. 219-272). Zbl0311.17002MR376786
  15. [15] J. LEPOWSKY, Existence of Conical Vectors in Induced Modules (Ann. of Math., Vol. 102, 1975, pp. 17-40). Zbl0314.17006MR379613
  16. [16] J. LEPOWSKY, On the Uniqueness of Conical Vectors (Proc. Amer. Math. Soc., Vol. 57, 1976, pp. 217-220). Zbl0342.17005MR409576
  17. [17] J. LEPOWSKY, Uniqueness of Embeddings of Certain Induced Modules (Proc. Amer. Math. Soc., Vol. 56, 1976, pp. 55-58). Zbl0335.17004MR399195
  18. [18] H. ROSSI and M. VERGNE, Analytic Continuation of the Holomorphic Discrete Series of a Semi-Simple Lie Group (Acta Math., Vol. 136, 1976, pp. 1-59). Zbl0356.32020MR480883
  19. [19] W. SCHMID, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Röumen (Invent. Math., Vol. 9, 1969, pp. 61-80). Zbl0219.32013MR259164
  20. [20] D. VOGAN, Representations of Real Reductive Lie Groups, Birkhöuser ; Boston-Basel-Stuttgart, 1981. Zbl0469.22012MR632407
  21. [21] N. WALLACH, Analytic Continuation of the Discrete Series II (Trans. Amer. Math. Soc., Vol. 251, 1979, pp. 19-37). Zbl0419.22018MR531967
  22. [22] B. ØRSTED, Composition Series for Analytic Continuations of Holomorphic Discrete Series Representations of SU (n, n) (Trans. Amer. Math. Soc., Vol. 260, 1980, pp. 563-573). Zbl0439.22017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.