On the characteristic polynomials of orbital varieties

Anthony Joseph

Annales scientifiques de l'École Normale Supérieure (1989)

  • Volume: 22, Issue: 4, page 569-603
  • ISSN: 0012-9593

How to cite

top

Joseph, Anthony. "On the characteristic polynomials of orbital varieties." Annales scientifiques de l'École Normale Supérieure 22.4 (1989): 569-603. <http://eudml.org/doc/82263>.

@article{Joseph1989,
author = {Joseph, Anthony},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {flag manifold; harmonic polynomials; complex semisimple Lie algebra; nilpotent orbit; dimension polynomial},
language = {eng},
number = {4},
pages = {569-603},
publisher = {Elsevier},
title = {On the characteristic polynomials of orbital varieties},
url = {http://eudml.org/doc/82263},
volume = {22},
year = {1989},
}

TY - JOUR
AU - Joseph, Anthony
TI - On the characteristic polynomials of orbital varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1989
PB - Elsevier
VL - 22
IS - 4
SP - 569
EP - 603
LA - eng
KW - flag manifold; harmonic polynomials; complex semisimple Lie algebra; nilpotent orbit; dimension polynomial
UR - http://eudml.org/doc/82263
ER -

References

top
  1. [1] H. H. ANDERSEN, Schubert Varieties and Demazure's Character formula (Invent. Math., Vol. 79, 1985, pp. 611-618). Zbl0591.14036MR86h:14042
  2. [2] M. F. ATIYAH and I. G. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley, London, 1969. Zbl0175.03601MR39 #4129
  3. [3] D. BARBASCH and D. VOGAN, Primitive Ideals and Orbital Integrals in Complex Classical Groups (Math. Ann., Vol. 259, 1982, pp. 153-199). Zbl0489.22010MR83m:22026
  4. [4] N. BERLINE and M. VERGNE, Fourier Transforms of Orbits of the Coadjoint Representation. In Representations Theory of Reductive Groups, Ed. P. C. Trombí, Birkhauser, Boston, 1983. Zbl0527.22010MR85g:22026
  5. [5] A. BOREL, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts (Annals of Math., Vol. 57, 1953, pp. 115-207). Zbl0052.40001MR14,490e
  6. [6] A. BOREL and J.-P. SERRE, Le théorème de Riemann-Roch (Bull. Soc. Math. France, T. 86, 1958, pp. 97-136). Zbl0091.33004MR22 #6817
  7. [7] W. BORHO, J.-L. BRYLINSKIR. MACPHERSON, Springer's Weyl Group Representations through Characteristic Classes of Cone Bundles (Math. Ann., Vol. 278, 1987, pp. 273-289). Zbl0624.14015MR89g:17010
  8. [8] W. BORHO, J.-L. BRYLINSKI and R. MACPHERSON, Equivariant K-Theory Approach to Nilpotent Orbits, preprint I.H.E.S., 1986. 
  9. [9] M. DEMAZURE, A Very Simple Proof of Bott's Theorem (Invent. Math., Vol. 33, 1976, pp. 271-272). Zbl0383.14017MR54 #2670
  10. [10] W. FULTON, Intersection Theory (Ergebnisse der Mathematik, Springer-Verlag, Berlin, 1984). Zbl0541.14005MR85k:14004
  11. [11] V. GINSBURG, G Modules, Springer's Representations and Bivariant Chern Classes (Adv. in Math., Vol. 61, 1986, pp. 1-48). Zbl0601.22008MR87k:17014
  12. [12] P. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, John Wiley, New York, 1978. Zbl0408.14001MR80b:14001
  13. [13] R. HARTSHORNE, Algebraic Geometry, in Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1977. Zbl0367.14001MR57 #3116
  14. [14] R. HOTTA, On Joseph's Construction of Weyl Group Representations (Tohoku Math. J., Vol. 36, 1984, pp. 49-74). Zbl0545.20029MR86h:20061
  15. [15] R. HOTTA and T. A. SPRINGER, A Specialization Theorem for Certain Weyl Group Representations and an Application to the Green Polynomials of Unitary Groups (Invent. Math., Vol. 41, 1977, pp. 113-127). Zbl0389.20037MR58 #5945
  16. [16] A. JOSEPH, Dixmier's Problem for Verma and Principal Series Submodules (J. Lond. Math. Soc., Vol. 20, 1979, pp. 193-204). Zbl0421.17005MR81c:17016
  17. [17] A. JOSEPH, Kostant's Problem, Goldie Rank and the Gelfand-Kirillov Conjecture (Invent. Math., Vol. 56, 1980, pp. 191-213). Zbl0446.17006MR82f:17008
  18. [18] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra II (J. Algebra, Vol. 65, 1980, pp. 284-306). Zbl0441.17004MR82f:17009
  19. [19] A. JOSEPH, On the Variety of a Highest Weight Module (J. Algebra, Vol. 88, 1984, pp. 238-279). Zbl0539.17006MR85j:17014
  20. [20] A. JOSEPH, A Surjectivity Theorem for Rigid Highest Weight Modules (Invent. Math., Vol. 92, 1988, pp. 567-596). Zbl0657.17004MR89d:17013
  21. [21] M. KASHIWARA and T. TANISAKI, The Characteristic Cycles of Holonomic Systems on a Flag Manifold (Invent. Math., Vol. 77, 1984, pp. 185-198). Zbl0611.22008MR86m:17015
  22. [22] D. KAZHDAN and G. LUSZTIG, A Topological Approach to Springer's Representations (Adv. in Math., Vol. 38, 1980, pp. 222-228). Zbl0458.20035MR82f:20076
  23. [23] D. R. KING, The Character Polynomial of the Annihilator of an Irreducible Harish-Chandra Module (Amer. J. Math., Vol. 103, 1980, pp. 1195-1240). Zbl0486.17003MR83d:22010a
  24. [24] D. MUMFORD, Algebraic Geometry I. Complex Projective Varieties, Springer-Verlag, New York, 1986. 
  25. [25] W. ROSSMANN, Invariant Eigendistributions on a Complex Lie Algebra and Homology Classes on the Conormal Variety, I, II, preprint, Ottawa, 1986. 
  26. [26] J.-P. SERRE, Algèbre locale multiplicités (Lecture Notes in Mathematics, No. 11, Springer-Verlag, New York, 1975). Zbl0296.13018MR34 #1352
  27. [27] I. R. SHAFAREVICH, Basic Algebraic Geometry, Springer-Verlag, New York, 1977. Zbl0362.14001MR56 #5538
  28. [28] N. SPALTENSTEIN, On the Fixed Point Set of a Unipotent Element on the Variety of Borel Subgroups Topology, Vol. 16, 1977, pp. 203-204. Zbl0445.20021MR56 #5735
  29. [29] R. STEINBERG, On the Desingularization of the Unipotent Variety (Invent. Math., Vol. 36, 1976, pp. 209-224). Zbl0352.20035MR55 #3101
  30. [30] T. TANISAKI, Associated Varieties of Highest Weight Modules, circulated notes, 1985. 
  31. [31] P. R. THIE, The Lelong Number of a Point of a Complex Analytic Set (Math. Ann., Vol. 172, 1967, pp. 269-312). Zbl0158.32804MR35 #5661
  32. [32] D. A. VOGAN, The Orbit Method and Primitive Ideals for Semisimple Lie Algebras (Canad. Math. Soc. Conference Proceedings, Vol. 5, 1986, pp. 281-316). Zbl0585.17008MR87k:17015
  33. [33] A. ARABIA, Cycles de Schubert et cohomologie équivalente de K/T (Invent. Math., Vol. 85, 1986, pp. 39-52). Zbl0624.22005MR87g:32036
  34. [34] I. N. BERNSTEIN, I. M. GELFAND and S. I. GELFAND, Schubert Cells and Cohomology of the Spaces G/P (Usp. Mat. Nauk., Vol. 28, 1973, pp. 3-26). Zbl0289.57024MR55 #2941
  35. [35] R. BOTT, Homogeneous Vector Bundles (Ann. of Math., Vol. 66, 1957, pp. 203-248). Zbl0094.35701MR19,681d

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.