Asymptotics and characteristic cycles for representations of complex groups

Jen-Tseh Chang

Compositio Mathematica (1993)

  • Volume: 88, Issue: 3, page 265-283
  • ISSN: 0010-437X

How to cite

top

Chang, Jen-Tseh. "Asymptotics and characteristic cycles for representations of complex groups." Compositio Mathematica 88.3 (1993): 265-283. <http://eudml.org/doc/90247>.

@article{Chang1993,
author = {Chang, Jen-Tseh},
journal = {Compositio Mathematica},
keywords = {connected semisimple Lie group; finite center; irreducible Harish-Chandra module; invariant eigendistribution; Lie algebra; Liouville measures; standard filtration; enveloping algebra; Sekiguchi correspondence; complex semisimple Lie groups},
language = {eng},
number = {3},
pages = {265-283},
publisher = {Kluwer Academic Publishers},
title = {Asymptotics and characteristic cycles for representations of complex groups},
url = {http://eudml.org/doc/90247},
volume = {88},
year = {1993},
}

TY - JOUR
AU - Chang, Jen-Tseh
TI - Asymptotics and characteristic cycles for representations of complex groups
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 88
IS - 3
SP - 265
EP - 283
LA - eng
KW - connected semisimple Lie group; finite center; irreducible Harish-Chandra module; invariant eigendistribution; Lie algebra; Liouville measures; standard filtration; enveloping algebra; Sekiguchi correspondence; complex semisimple Lie groups
UR - http://eudml.org/doc/90247
ER -

References

top
  1. [B-V] D. Barbasch and D. Vogan, The local structure of characters, J. Funct. Anal.37 (1980) 27-55. Zbl0436.22011MR576644
  2. [B-B1] A. Beilinson and J. Bernstein, Localisation de g-modules, C.R. Acad. Sci. Paris, Ser. I29215-18. Zbl0476.14019MR610137
  3. [B-B2] A. Beilinson and J. Bernstein, A Generalization of Casselman's Submodule Theorem, Representation Theory of Reductive Groups, Progress in Mathematics40, Birkhäuser, Boston, 1983. Zbl0526.22013
  4. [B] J. Bernstein, Algebraic Theory of D-Modules, mimeographed note (1983). 
  5. [Bo-Br] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces III, Invent. Math.80 (1985) 1-68. Zbl0577.22014MR784528
  6. [C-E] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1956. Zbl0075.24305MR77480
  7. [Ca] L. Casian, Primitive ideals and representations, J. Algebra101 (1986) 497-515. Zbl0598.17006MR847174
  8. [C-1] J.-T. Chang, Special K-types, tempered characters and the Beilinson-Bernstein realization, Duke Math. J.56 (1988) 345-383. Zbl0655.22010MR932850
  9. [C-2] J.-T. Chang, Characteristic cycles of holomorphic discrete series, preprint, to appear in Trans. A.M.S. Zbl0785.22016MR1087052
  10. [H] R. Hartshone, Algebraic Geometry, Springer-Verlag, New York, 1979. 
  11. [H-M-S-W] H. Hecht, D. Miličič, W. Schmid and J. Wolf, Localization and standard modules for real semisimple Lie groups I: the duality theorem, Invent. Math.90 (1987) 297-332. Zbl0699.22022MR910203
  12. [H-S] H. Hecht and W. Schmid, Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math.151 (1983) 49-151. Zbl0523.22013MR716371
  13. [J1] A. Joseph, Goldie rank in the enveloping algebra of a semisimple Lie algebra II, J. Algebra65 (1980) 284-306. Zbl0441.17004MR585721
  14. [J2] A. Joseph, On the characteristic polynomials of orbital varieties, Ann. E.N.S. 22 (1989) 569-603. Zbl0695.17003MR1026751
  15. [K-R] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math.93 (1971) 753-809. Zbl0224.22013MR311837
  16. [K-T] M. Kashiwara and T. Tanisaki, The characteristic cycles of holonomic systems on a flag manifold, Invent. Math.77 (1984) 185-198. Zbl0611.22008MR751138
  17. [M] D. Mumford, Geometric Invariant Theory, Ergebnisse der Mathematik, Band 34, Springer-Verlag, Berlin-Heidelberg: New York, 1965. Zbl0147.39304MR214602
  18. [R] W. Rossmann, Invariant eigendistributions on a complex Lie algebra and homology classes on the conormal variety I, II, J. Funct. Anal.96 (1991) 130-193. Zbl0755.22005MR1093510
  19. [S] J. Sekiguchi, Remarks on nilpotent orbits of a symmetric pair, J. Math. Soc. Japan39 (1987) 127-138. Zbl0627.22008MR867991
  20. [V1] D. Vogan, Jr., Representations of Real Reductive Lie Groups, Birkhäuser, Boston, 1981. Zbl0469.22012MR632407
  21. [V2] D. Vogan, Jr., Five Lectures, at Bowdoin College, August 1989. 
  22. [V3] D. Vogan, Jr., Associated varieties and unipotent representations, preprint (1990). MR1168491
  23. [V4] D. Vogan, Jr., Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math.48 (1978) 75-98. Zbl0389.17002MR506503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.