Orbites fermées et orbites tempérées

Jean-Yves Charbonnel

Annales scientifiques de l'École Normale Supérieure (1990)

  • Volume: 23, Issue: 1, page 123-149
  • ISSN: 0012-9593

How to cite

top

Charbonnel, Jean-Yves. "Orbites fermées et orbites tempérées." Annales scientifiques de l'École Normale Supérieure 23.1 (1990): 123-149. <http://eudml.org/doc/82266>.

@article{Charbonnel1990,
author = {Charbonnel, Jean-Yves},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {tempered orbits; Ad-algebraic groups; connected Lie group; coadjoint representation; semisimple groups; closed coadjoint orbit},
language = {fre},
number = {1},
pages = {123-149},
publisher = {Elsevier},
title = {Orbites fermées et orbites tempérées},
url = {http://eudml.org/doc/82266},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Charbonnel, Jean-Yves
TI - Orbites fermées et orbites tempérées
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 1
SP - 123
EP - 149
LA - fre
KW - tempered orbits; Ad-algebraic groups; connected Lie group; coadjoint representation; semisimple groups; closed coadjoint orbit
UR - http://eudml.org/doc/82266
ER -

References

top
  1. [1] J.-E. BJØRK, Rings of differential operators, North-Holland Mathematical Library, vol. 21. Zbl0499.13009
  2. [2] N. BOURBAKI, Éléments de Mathématiques. Intégration chapitres 7 et 8, Hermann, Paris. 
  3. [3] J.-Y. CHARBONNEL, Méthode des orbites. Applications exponentielles et cônes polyédraux, Preprint. 
  4. [4] P. DELIGNE, Équations différentielles à points singuliers réguliers (Lect. Notes Math., n° 163). Zbl0244.14004MR54 #5232
  5. [5] A. GROTHENDIECK, Éléments de géométrie algébrique III : Étude cohomologique des faisceaux cohérents (Publications Mathématiques de l'I.H.E.S., n° 11). Zbl0122.16102
  6. [6] R. HARTSHORNE, Algebraic geometry (Graduate texts in Mathematics, n° 52, Springer-Verlag). Zbl0367.14001MR57 #3116
  7. [7] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero (Ann. Math., vol. 79, 1964, p. 109-326). Zbl0122.38603MR33 #7333
  8. [8] G. D. MOSTOW, Fully reducible subgroups of algebraic groups (Am. J. Math., vol. 78, 1956, p. 200-221). Zbl0073.01603MR19,1181f
  9. [9] M. ROSENLICHT, Some rationality questions on algebraic groups (Ann. Pure Applicata, vol. 6, 1957, p. 25-50). Zbl0079.25703MR19,767h
  10. [10] J.-P. SERRE, Géométrie algébrique et géométrie analytique (Ann. Inst. Fourier, vol. 6, 1955-1956, p. 1-42). Zbl0075.30401MR18,511a
  11. [11] C. S. SESHADRI, Some results on the quotient space by an algebraic group of automorphisms. (Math. Ann., n° 149, 1963, p. 286-301). Zbl0113.36306MR26 #6169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.