Polynomial bounds for the number of automorphisms of a surface of general type

Alessio Corti

Annales scientifiques de l'École Normale Supérieure (1991)

  • Volume: 24, Issue: 1, page 113-137
  • ISSN: 0012-9593

How to cite

top

Corti, Alessio. "Polynomial bounds for the number of automorphisms of a surface of general type." Annales scientifiques de l'École Normale Supérieure 24.1 (1991): 113-137. <http://eudml.org/doc/82288>.

@article{Corti1991,
author = {Corti, Alessio},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {order of the automorphism group of surfaces of general type; invariant locus; Weierstrass points; discriminantal divisor},
language = {eng},
number = {1},
pages = {113-137},
publisher = {Elsevier},
title = {Polynomial bounds for the number of automorphisms of a surface of general type},
url = {http://eudml.org/doc/82288},
volume = {24},
year = {1991},
}

TY - JOUR
AU - Corti, Alessio
TI - Polynomial bounds for the number of automorphisms of a surface of general type
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1991
PB - Elsevier
VL - 24
IS - 1
SP - 113
EP - 137
LA - eng
KW - order of the automorphism group of surfaces of general type; invariant locus; Weierstrass points; discriminantal divisor
UR - http://eudml.org/doc/82288
ER -

References

top
  1. [1] A. ANDREOTTI, Sopra le Superficie Algebriche che Posseggono Trasformazioni Birazionali in se [Rend. Mat. (Univ. Roma), Vol. 9, 1950, pp. 255-279]. Zbl0041.08502MR14,201b
  2. [2] W. BARTH, C. PETERS and A. VAN DE VEN, Compact Complex Surfaces, Springer-Verlag, 1984. Zbl0718.14023MR86c:32026
  3. [3] A. BEAUVILLE, L'application Canonique pour les Surfaces de Type Général (Inv. Math., Vol. 55, 1979, pp. 121-140). Zbl0403.14006MR81m:14025
  4. [4] P. DU VAL, Homographies, Quaternions and Rotations, Clarendon Press, Oxford, 1964. Zbl0128.15403MR29 #6361
  5. [5] W. FULTON, Intersection Theory, Springer-Verlag, 1984. Zbl0541.14005MR85k:14004
  6. [6] F. HIRZEBRUCH, Topological Methods in Algebraic Geometry, Springer-Verlag, 1978³. 
  7. [7] C. S. HORSTMANN, Ph. D. Thesis (to appear). 
  8. [8] A. HOWARD and A. J. SOMMESE, On the Order of the Automorphism Group of Certain Projective Manifolds, Manifolds and Lie Groups (Papers in Honor of Y. Matsushima), Birkhäuser, 1981, pp. 145-158. Zbl0483.32016MR84e:14011
  9. [9] S. ITAKA, Weierstraβ Forms Associated with Linear Systems (Adv. Math., Vol. 33, 1976, pp. 14-30). Zbl0417.14014
  10. [10] S. KLEIMAN, Geometry on Grassmannians and Applications to Splitting Bundles and Smoothing Cycles (Publ. Math. I.H.E.S., Vol. 36, 1969, pp. 281-298). Zbl0208.48501MR42 #281
  11. [11] S. KOBAYASHI, Differential Geometry of Complex Vector Bundles (Publ. Math. Soc., Vol. 15, 1987). Zbl0708.53002MR89e:53100
  12. [12] M. MARUYAMA, The Theorem of Grauert-Mülich-Sprindler (Math. Ann., Vol. 255, 1981, pp. 317-333). Zbl0438.14015MR82k:14012
  13. [13] H. MATSUMURA, On Algebraic Groups of Birational Transformations (Rend. Acc. Linc., ser. 8, Vol. 34, 1963, pp. 151-155). Zbl0134.16601MR28 #3041
  14. [14] Y. MIYAOKA, On the Chern Numbers of Surfaces of General Type (Inv. Math., Vol. 42, 1977, pp. 225-237). Zbl0374.14007MR57 #337
  15. [15] R. OGAWA, On the points of Weierstraβ in Dimension Greater than One (Trans. Am. Math. Soc., Vol. 184, 1973, pp. 401-417). Zbl0261.32004MR48 #4343
  16. [16] G. XIAO, L'irrégularité des Surfaces de Type Général dont le Système Canonique est Composé d'un Pinceau (Comp. Math., Vol. 56, 1985, pp. 251-257). Zbl0594.14029MR87d:14031
  17. [17] S. T. YAU, On the Ricci Curvature of a Compact Kähler Manifold and the Complex Monge-Ampère Equation, I (Comm. Pure Appl. Math., Vol. 31, 1978, pp. 339-414). Zbl0369.53059MR81d:53045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.