On the automorphisms of surfaces of general type in positive characteristic, II
- Volume: 5, Issue: 1, page 63-68
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBallico, Edoardo. "On the automorphisms of surfaces of general type in positive characteristic, II." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.1 (1994): 63-68. <http://eudml.org/doc/244128>.
@article{Ballico1994,
abstract = {Here we give an upper polynomial bound (as function of \( K\_\{X^\{2\}\} \) but independent on \( p \)) for the order of a \( p \)-subgroup of \( Aut (X)\_\{red\} \) with \( X \) minimal surface of general type defined over the field \( K \) with \( char (K) = p > 0 \). Then we discuss the non existence of similar bounds for the dimension as \( K \)-vector space of the structural sheaf of the scheme \( Aut(X) \).},
author = {Ballico, Edoardo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Surfaces of general type; Automorphism group; Group scheme; p-group; characteristic ; minimal surfaces of general type},
language = {eng},
month = {3},
number = {1},
pages = {63-68},
publisher = {Accademia Nazionale dei Lincei},
title = {On the automorphisms of surfaces of general type in positive characteristic, II},
url = {http://eudml.org/doc/244128},
volume = {5},
year = {1994},
}
TY - JOUR
AU - Ballico, Edoardo
TI - On the automorphisms of surfaces of general type in positive characteristic, II
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/3//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 1
SP - 63
EP - 68
AB - Here we give an upper polynomial bound (as function of \( K_{X^{2}} \) but independent on \( p \)) for the order of a \( p \)-subgroup of \( Aut (X)_{red} \) with \( X \) minimal surface of general type defined over the field \( K \) with \( char (K) = p > 0 \). Then we discuss the non existence of similar bounds for the dimension as \( K \)-vector space of the structural sheaf of the scheme \( Aut(X) \).
LA - eng
KW - Surfaces of general type; Automorphism group; Group scheme; p-group; characteristic ; minimal surfaces of general type
UR - http://eudml.org/doc/244128
ER -
References
top- BALLICO, E., On the automorphisms of surfaces of general type in positive characteristic. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 121-129. Zbl0795.14022MR1233400
- BALLICO, E. - CILIBERTO, C., On Gaussian maps for projective varieties. Geometry of Complex Projective Varieties, Proc. Cetraro Conferences, Mediterranean Press, 1993, 35-54. Zbl0943.14019MR1225587
- BROWDER, W. - KATZ, N., Free actions of finite groups on varieties, II. Math. Ann., vol. 260, 1982, 403-412. Zbl0551.14019MR670189DOI10.1007/BF01457020
- CATANESE, F. - SCHNEIDER, M., Bounds for stable bundles and degrees of Weierstrass schemes. Math. Ann., vol. 293, 1992, 579-594. Zbl0782.14016MR1176022DOI10.1007/BF01444736
- CORTI, A., Polynomial bounds for the number of automorphisms of a surface of general type. Ann. scient. Ec. Norm. Sup., (4), vol. 24, 1991, 113-137. Zbl0758.14026MR1088272
- DOLGACHEV, I., The Euler characteristic of a family of algebraic varieties. Math. USSR Sb., vol. 18, 1972, 303-319. Zbl0263.14002
- FARKAS, H. - KRA, I., Riemann Surfaces. Grad. Text in Math., 71, Springer-Verlag, 1980. Zbl0475.30001MR583745
- GANONG, R. - RUSSELL, P., The tangent bundle of a ruled surface. Math. Ann., vol. 271, 1985, 527-548. Zbl0541.14035MR790114DOI10.1007/BF01456133
- HOWARD, A. - SOMMESE, A. J., On the orders of the automorphism groups of certain projective manifolds. In: Manifolds and Lie Groups. Progress in Math., vol. 14, Birkhäuser, Boston-Basel-Stuttgart1981, 145-158. Zbl0483.32016MR642855
- HUCKLEBERRY, A. T. - SAUER, M., On the order of the automorphism group of a surface of general type. Math. Z., vol. 205, 1990, 321-329. Zbl0718.32022MR1076138DOI10.1007/BF02571245
- KATZ, N., Pinceaux de Lefschetz: théorème d'existence. SGA 7 II, Exposé XVII, pp. 212-253, Lect. Notes in Math.340, Springer-Verlag, 1973. Zbl0284.14006
- KLEIMAN, S., Tangency and duality. Proceedings of the 1984 Vancouver Conference in Algebraic Geometry. CMS-AMS Conference Proceedings, 6, 1985, 163-226. Zbl0601.14046MR846021
- KURKE, H., Example of false ruled surfaces. Proceedings of Symposium on Algebraic Geometry. Kinosaki 1981, 203-223.
- LANG, W., Example of surfaces of general type with vector fields. In: Arithmetic and Geometry, papers dedicated to I. R. Shafarevich, Vol. 2. Progress in Math., vol. 36, Birkhäuser, Boston-Basel-Stuttgart1983, 167-173. Zbl0576.14039MR717611
- SEKIGUCHI, T. - OORT, F. - SUWA, N., On the deformation of Artin-Schreyer to Kummer. Ann Scient. Ec. Norm. Sup., (4), vol. 22, 1989, 345-375. Zbl0714.14024MR1011987
- STÖHR, O. - VOLOCH, J. F., A formula for the Cartier operator on plane algebraic curves. J. Reine Angew. Math., vol. 377, 1987, 49-64. Zbl0605.14023MR887399DOI10.1515/crll.1987.377.49
- SUZUKI, M., Group Theory II. Springer-Verlag, 1986. Zbl0586.20001MR815926DOI10.1007/978-3-642-86885-6
- WAHL, J., A cohomological characterization of . Invent. Math., vol. 72, 1983, 315-322. Zbl0544.14013MR700774DOI10.1007/BF01389326
- YUI, N., On the jacobian varieties of hyperelliptic curves over fields of characteristic . J. Algebra, vol. 52, 1978, 378-410. Zbl0404.14008MR491717
- XIAO, G., On abelian automorphism groups of a surface of general type. Invent. Math., vol. 102, 1990, 619-631. Zbl0739.14024MR1074488DOI10.1007/BF01233441
- XIAO, G., Bound of automorphisms of surfaces of general type, I. Preprint Max-Planck-Institüt MPV91-55. Zbl0811.14011MR1259364DOI10.2307/2946627
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.