Real algebraic curves in the moduli space of complex curves

Mika Seppälä

Compositio Mathematica (1990)

  • Volume: 74, Issue: 3, page 259-283
  • ISSN: 0010-437X

How to cite

top

Seppälä, Mika. "Real algebraic curves in the moduli space of complex curves." Compositio Mathematica 74.3 (1990): 259-283. <http://eudml.org/doc/90021>.

@article{Seppälä1990,
author = {Seppälä, Mika},
journal = {Compositio Mathematica},
keywords = {moduli space of complex isomorphism classes of real algebraic curves; semialgebraic varieties},
language = {eng},
number = {3},
pages = {259-283},
publisher = {Kluwer Academic Publishers},
title = {Real algebraic curves in the moduli space of complex curves},
url = {http://eudml.org/doc/90021},
volume = {74},
year = {1990},
}

TY - JOUR
AU - Seppälä, Mika
TI - Real algebraic curves in the moduli space of complex curves
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 74
IS - 3
SP - 259
EP - 283
LA - eng
KW - moduli space of complex isomorphism classes of real algebraic curves; semialgebraic varieties
UR - http://eudml.org/doc/90021
ER -

References

top
  1. [1] Abhayankar, S.S., "Local Analytic Geometry". Volume XIV of Mathematics, Academic Press, New York and London, 1964. Zbl0205.50401MR175897
  2. [2] Abikoff, William, "The Real Analytic Theory of Teichmüller Space ". Volume 820 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl0452.32015MR590044
  3. [3] Alling, Norman L. and Newcomb Greenleaf, "Foundations of the theory of Klein surfaces". Volume 219 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg- New York, 1971. Zbl0225.30001MR333163
  4. [4] Andreotti, Aldo and Per Holm, Quasianalytic and parametric spaces. In Per Holm, editor, Real and complex singularities, Oslo 1976, pages 13-97, Sijthoff & NoordhoffInternational Publishers, Alphen aan den Rijn, The Netherlands, 1977. Zbl0376.32025MR589903
  5. [5] Bers, Lipman, Finite dimensional Teichmüller spaces and generalizations. Bull. Amer. Math. Soc., 5(2):131-172, September 1981. Zbl0485.30002MR621883
  6. [6] Earle, C.J., On moduli of closed Riemann surfaces with symmetries. In "Advances in the Theory of Riemann Surfaces". Annals of Mathematics Studies66, pages 119-130, Princeton University Press and University of Tokyo Press, Princeton, New Yersey, 1971. Zbl0218.32010MR296282
  7. [7] Fay, J., "Theta functions on Riemann surfaces". Volume 352 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg -New York, 1973. Zbl0281.30013MR335789
  8. [8] Gross, B.H. and J. Harris, Real algebraic curves. Ann. scient. Éc. Norm. Sup.4e série, 14:157-182, 1981. Zbl0533.14011MR631748
  9. [9] Igusa, J.-J., "Theta Functions". Springer-Verlag, Berlin-Heidelberg-New York, 1972. Zbl0251.14016MR325625
  10. [10] Klein, Felix, Über eine neue Art von Riemannschen Flächen. Math. Annalen, 10, 1876. 
  11. [11] Klein, Felix, Über Realitätsverhältnisse bei der einem beliebigen Geschlechte zugehörigen Normalkurve der ϕ. Math. Annalen, 42, 1892. JFM25.0689.03
  12. [12] Klein, Felix, "Über Riemanns Theorie der algebraischen Funktionen und ihrer Integrale".- Eine Ergänzung der gewöhnlichen Darstellungen. B.G. Teubner, Leipzig, 1882. 
  13. [13] Knudsen, Finn and David Mumford, The projectivity of the moduli space of stable curves. i: preliminaries on "det" and "Div". Math. Scand., 39:19-55, 1976. Zbl0343.14008MR437541
  14. [14] Knudsen, Finn F., The projectivity of the moduli space of stable curves. ii: the stacks m sub(g, n). Math. Scand., 52:161-199, 1983. Zbl0544.14020MR702953
  15. [15] Knudsen, Finn F., The projectivity of the moduli space of stable curves. iii: the line bundles on m sub(g, n), and a proof of the projectivity of m - sub(g, n) in characteristic 0. Math. Scand., 52:200-212, 1983. Zbl0544.14021MR702954
  16. [16] Lehto, Olli, "Univalent functions and Teichmüller spaces". Volume 109 of Graduate Texts in Mathematics, Springer, Berlin- Heidelberg-New York, 1986. Zbl0606.30001MR867407
  17. [17] Mumford, D. and Fogarty, J., "Geometric Invariant Theory". Volume 34 of Ergebnisse der Mathematik, Springer-Verlag, Berlin-Heidelberg- New York, 1982. Zbl0504.14008MR719371
  18. [18] Mumford, David, "Curves and Their Jacobians". University of Michigan Press, Ann Arbor, Michigan, second printing 1976 edition, 1975. Zbl0316.14010MR419430
  19. [19] Seppälä, Mika, Complex algebraic curves with real moduli. J. reine angew. Math., 387:209-220, 1988. Zbl0638.32020MR946356
  20. [20] Seppälä, Mika, Moduli spaces of real algebraic curves. July 1989. Preprint. 
  21. [21] Seppälä, Mika, On moduli of real curves. In Jean-Jacques Risler, editor, Seminaire sur la Geometrie Algebrique Reelle, pages 85-95, Publications Mathématiques de l'Université Paris VII, Paris VII, 1986. Zbl0655.14011MR923550
  22. [22] Seppälä, Mika, On moduli of real curves. Rocky Mountain Journal of Mathematics, 14(4), 1984. Zbl0564.14012MR773143
  23. [23] Seppälä, Mika, Quotients of complex manifolds and moduli spaces of Klein surfaces. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 6:113-124, 1981. Zbl0456.32014MR639968
  24. [24] Seppälä, Mika, Teichmüller spaces of Klein surfaces. Ann. Acad. Sci. Fenn. Ser. A. I. Mathematica Diss., 15:1-37, 1978. Zbl0407.32010MR503039
  25. [25] Seppälä, Mika and Robert Silhol, Moduli spaces for real algebraic curves and real abelian varieties. Math. Z., 201:151-165, 1989. Zbl0645.14012MR997218
  26. [26] Siegel, Carl L., "Topics in Complex Function Theory". Volume 2 of Wiley-Interscience, John Wiley & Sons, Inc., New York- London-Sydney-Toronto, 1971. Zbl0635.30003
  27. [27] Weichhold, Guido, Über symmetrische Riemannsche Flächen und die Periodizitätsmodulen der zugehörigen Abelschen Normalintegrale erstes Gattung. Leipziger Dissertation, 1883. 
  28. [28] Wolpert, Scott A., The geometry of the moduli space of Riemann surfaces. Bull. Am. Math. Soc., New Ser., 11:189-191, 1984. Zbl0565.32011MR741738

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.