Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg

Hubert Pesce

Annales scientifiques de l'École Normale Supérieure (1992)

  • Volume: 25, Issue: 5, page 515-538
  • ISSN: 0012-9593

How to cite

top

Pesce, Hubert. "Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg." Annales scientifiques de l'École Normale Supérieure 25.5 (1992): 515-538. <http://eudml.org/doc/82326>.

@article{Pesce1992,
author = {Pesce, Hubert},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {nilpotent Lie group; isospectral deformations; almost linear automorphisms},
language = {fre},
number = {5},
pages = {515-538},
publisher = {Elsevier},
title = {Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg},
url = {http://eudml.org/doc/82326},
volume = {25},
year = {1992},
}

TY - JOUR
AU - Pesce, Hubert
TI - Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1992
PB - Elsevier
VL - 25
IS - 5
SP - 515
EP - 538
LA - fre
KW - nilpotent Lie group; isospectral deformations; almost linear automorphisms
UR - http://eudml.org/doc/82326
ER -

References

top
  1. [1] M. BERGER, P. GAUDUCHON et E. MAZET, Le spectre d'une variété riemanienne (Lecture Notes in Math., Springer, 194, 1971). Zbl0223.53034MR43 #8025
  2. [2] A. BOREL, Introduction aux groupes arithmétiques, Hermann, Actualités scientifiques et industrielles, 1341. Zbl0186.33202MR39 #5577
  3. [3] D. DETURCK et C. S. GORDON, Isospectral Deformations II : Trace Formulas, Metrics and Potentials (Comm. Pure Appl. Math., vol. 40, 1987, p. 367-387). Zbl0709.53030MR88m:58186
  4. [4] P. EBERLEIN, Geometry of 2-Step Nilpotent Groups with a Left Invariant Metric, Preprint de l'Université de Caroline du Nord. 
  5. [5] C. S. GORDON et E. N. WILSON, Isospectral Deformations of Compact Solvmanifolds (J. Differential Geom., vol. 19, 1984, p. 241-256). Zbl0523.58043MR85j:58143
  6. [6] C. S. GORDON et E. N. WILSON, Isometry Groups of Solvmanifolds (Trans. Amer. Math. Soc., vol. 307, 1988, p. 245-256). Zbl0664.53022MR89g:53073
  7. [7] C. S. GORDON et E. N. WILSON, The Spectrum of the Laplacian on Riemannian Heisenberg Manifolds (Michigan Math. J., vol. 33, 1986, p. 253-271). Zbl0599.53038MR87k:58275
  8. [8] V. GUILLEMIN et D. KAZHDAN, Some Inverse Spectral Results for Negatively Curved n-Manifolds (Proc. Symp. Pure Math., Geometry of the Laplace Operator, Amer. Math. Soc., vol. 36, 1980, p. 153-180). Zbl0456.58031MR81i:58048
  9. [9] V. GUILLEMIN et D. KAZHDAN, Some Inverse Spectral Results for Negatively Curved 2-Manifolds (Topology, vol. 19, 1980, p. 153-180). Zbl0465.58027
  10. [10] IKEDA, Isospectral Problem for Spherical Space Forms, in Spectra of Riemannian Manifolds, M. BERGER, S. MURAKANI et T. OCHIAI éd. ; Kaigai Publication, 1983, p. 57-63. 
  11. [11] A. KAPLAN, Riemannian Nilmanifolds Attached to Clifford Modules (Geom. Dedicata, vol. 11, 1981, p. 127-136). Zbl0495.53046MR82h:22008
  12. [12] A. KAPLAN, Fundamental Solutions for a Class of Hypoelliptic PDE Generated by Composition of Quadratics Forms (Trans. Amer. Math. Soc., vol. 258, n° 1, mars 1980). Zbl0393.35015MR81c:58059
  13. [13] Y. KITAOKA, Positive Definite Quadratic Form with Same Representation Numbers (Arch. Math., vol. 28, 1977, p. 495-497). Zbl0361.10019MR56 #255
  14. [14] J. MILNOR, Eigenvalues of the Laplace Operator on Certain Manifolds (Proc. Nat. Acad. Sci., vol. 51, 1964, p. 542). Zbl0124.31202MR28 #5403
  15. [15] J. MILNOR, Curvatures of Left Invariant Metrics on Lie Groups (Advances in mathematics, vol. 21, 1976, p. 293-329). Zbl0341.53030MR54 #12970
  16. [16] M. MIN-OO, Spectral Rigidity for Manifolds with Negative Curvature Operator (Contemp. Math. Nonlinear Problems in Geometry, vol. 51, 1986, p. 99-103). Zbl0591.53041MR87k:58278
  17. [17] M. S. RAGHUNATHAN, Discrete Subgroups of Lie Groups, Springer-Verlag, New York, 1972. Zbl0254.22005MR58 #22394a
  18. [18] T. SUNADA, Riemannian Covering and Isospectral Manifolds (Ann. of Math., vol. 121, 1985, p. 169-186). Zbl0585.58047MR86h:58141
  19. [19] M.-F. VIGNERAS, Variétés riemanniennes isospectrales et non isométriques (Ann. of Math., vol. 112, 1980, p. 21-32). Zbl0445.53026MR82b:58102
  20. [20] S. WOLPERT, The Eigenvalues Spectrum as Moduli for Flat Tori (Trans. Amer. Math. Soc., vol. 244, 1978, p. 313-321). Zbl0405.58051MR58 #24155
  21. [21] S. WOLPERT, The Length Spectrum as Moduli for Compact Riemann Surfaces (Ann. of Math., vol. 109, 1979, p. 323-351). Zbl0441.30055MR80j:58067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.