Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles

Pierre Arnoux; Arnaldo Nogueira

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 6, page 645-664
  • ISSN: 0012-9593

How to cite

top

Arnoux, Pierre, and Nogueira, Arnaldo. "Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles." Annales scientifiques de l'École Normale Supérieure 26.6 (1993): 645-664. <http://eudml.org/doc/82351>.

@article{Arnoux1993,
author = {Arnoux, Pierre, Nogueira, Arnaldo},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {generalized continued fraction algorithms; Brun-Selmer algorithm; Gauss measures; geodesic flow; Levy constant},
language = {fre},
number = {6},
pages = {645-664},
publisher = {Elsevier},
title = {Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles},
url = {http://eudml.org/doc/82351},
volume = {26},
year = {1993},
}

TY - JOUR
AU - Arnoux, Pierre
AU - Nogueira, Arnaldo
TI - Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 6
SP - 645
EP - 664
LA - fre
KW - generalized continued fraction algorithms; Brun-Selmer algorithm; Gauss measures; geodesic flow; Levy constant
UR - http://eudml.org/doc/82351
ER -

References

top
  1. [AF1] R. ADLER et L. FLATTO, The Backward Continued Fraction Map and Geodesic Flow (Ergod. Th. & Dynam. Sys., vol. 4, 1984, p. 487-492). Zbl0563.58019MR86h:58116
  2. [AF2] R. ADLER et L. FLATTO, Geodesic Flows, Interval Maps and Symbolic Dynamics (Bull. Amer. Math. Soc., vol. 25, 1991, p. 229-334). Zbl0802.58037MR92b:58172
  3. [Ar] G. ARSAC, L'origine de la démonstration : essai d'épistémologie didactique, Recherches en didactique des mathématiques, vol. 8, 1987, p. 267-312. 
  4. [BKS] Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, edited by T. BEDFORD, M. KEANE and C, Series, Oxford Science Publications, Oxford, 1991. Zbl0743.00040
  5. [Bi] P. BILLINGSLEY, Ergodic Theory and Information, John Wiley & Sons, New York, 1965. Zbl0141.16702MR33 #254
  6. [Br] A. J. BRENTJES, Multi-Dimensional Continued Fractions Algorithms, Mathematical Centre Tracts 145, Amsterdam, 1981. Zbl0471.10024MR83b:10038
  7. [Fa] C. FAIVRE, Distribution des constantes de Lévy des nombres quadratiques, Thèse, Université de Provence, 1991. 
  8. [INT] S. ITO, H. NAKADA et S. TANAKA, On the Invariant Measure for the Transformations Associated with some Real Continued Fractions, Keio Engeneering Reports, vol. 30, 1977, p. 159-175. Zbl0412.10037MR58 #16574
  9. [Ja] H. JAGER, The Distribution of Certain Sequences connected with the Continued Fraction (Indag. Math., vol. 48, 1986, p. 61-69). Zbl0588.10061MR87g:11092
  10. [Kh] A. YA. KHINCHIN, Continued Fractions, The University of Chicago Press, Chicago, 1964. Zbl0117.28601
  11. [Le] P. LEVY, Sur le développement en fraction continue d'un nombre choisi au hasard, Compositio Mathematica, vol. 3, 1936, p. 286-303. Zbl0014.26803JFM62.0246.01
  12. [Mo] B. MORIN, Structure géométrique d'un ensemble de surfaces : l'ensemble des métriques à courbure nulle du tore, dans Encyclopédie philosophique, Presses Universitaires de France, Paris. 
  13. [Na] H. NAKADA, Metrical Theory for a Class of Continued Fraction Transformations and Their Natural Extensions (Tokyo J. Math., vol. 4, 1981, p. 399-426). Zbl0479.10029MR83k:10095
  14. [Po] M. POLLICOTT, Distribution of Closed Geodesics on the Modular Surface and Quadratic Irrationals (Bull. Soc. Math. Fr., vol. 114, 1986, p. 431-446). Zbl0624.58019MR88j:58102
  15. [Sc1] F. SCHWEIGER, The Metrical Theory of Jacobi-Perron Algorithm (Lecture Notes Math., vol. 334, Springer Verlag, Berlin, 1973). Zbl0287.10041MR49 #10654
  16. [Sc2] F. SCHWEIGER, Ergodische Eigenschaften der Algorithmen von Brun und Selmer (S. Ber. Österr. Akad. Wiss. Math.-naturw. K1, Abt. II, vol. 191, 1982, p. 325-329). Zbl0518.10060MR84m:10046
  17. [Sc3] F. SCHWEIGER, Invariant Measures for Maps of Continued Fraction Type [J. Number Theory, 1990, (à paraître)]. Zbl0748.11037
  18. [Sc4] F. SCHWEIGER, Ergodic Properties of Fibered Systems, Prépublication de l'université de Salzburg, 1989. 
  19. [Se] C. SERIES, Geometrical Markov Coding of Geodesics on Surfaces of Constant Negative Curvature, (Ergod. Th. & Dynam. Sys., vol. 6, 1986, p. 601-625). Zbl0593.58033MR88k:58130
  20. [Ve1] W. A. VEECH, Gauss Measures for Transformations on the space of interval Exchange Maps (Ann. of Math., vol. 115, 1982, p. 201-242). Zbl0486.28014MR83g:28036b
  21. [Ve2] W. A. VEECH, The Teichmüller Geodesic flow (Ann. of Math., vol. 124, 1986, p. 441-530). Zbl0658.32016MR88g:58153

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.