Characteristic exponents of the Jacobi-Perron algorithm and of the associated map

Anne Broise-Alamichel[1]; Yves Guivarc'h[2]

  • [1] Université Paris-Sud, UMR 8628 du CNRS, Laboratoire de Mathématiques, Équipe de Topologie et Dynamique, Bâtiment 425, 91405 Orsay Cedex (France)
  • [2] Université de Rennes I, UMR 6625 du CNRS, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex (France)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 3, page 565-686
  • ISSN: 0373-0956

Abstract

top
We prove that, for every dimension d , the Lyapunov exponents of the Jacobi-Perron algorithm are all different, and that the sum of the extreme exponents is strictly positive. Especially, if d = 2 , the second exponent is strictly negative.

How to cite

top

Broise-Alamichel, Anne, and Guivarc'h, Yves. "Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée." Annales de l’institut Fourier 51.3 (2001): 565-686. <http://eudml.org/doc/115925>.

@article{Broise2001,
abstract = {On montre que les exposants de Lyapunov de l’algorithme de Jacobi-Perron, en dimension $d$ quelconque, sont tous différents et que la somme des exposants extrêmes est strictement positive. En particulier, si $d=2$, le deuxième exposant est strictement négatif.},
affiliation = {Université Paris-Sud, UMR 8628 du CNRS, Laboratoire de Mathématiques, Équipe de Topologie et Dynamique, Bâtiment 425, 91405 Orsay Cedex (France); Université de Rennes I, UMR 6625 du CNRS, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex (France)},
author = {Broise-Alamichel, Anne, Guivarc'h, Yves},
journal = {Annales de l’institut Fourier},
keywords = {Lyapunov spectrum; Jacobi-Perron algorithm; product of stationary random matrices; periodic points; transfer operators},
language = {fre},
number = {3},
pages = {565-686},
publisher = {Association des Annales de l'Institut Fourier},
title = {Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée},
url = {http://eudml.org/doc/115925},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Broise-Alamichel, Anne
AU - Guivarc'h, Yves
TI - Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 3
SP - 565
EP - 686
AB - On montre que les exposants de Lyapunov de l’algorithme de Jacobi-Perron, en dimension $d$ quelconque, sont tous différents et que la somme des exposants extrêmes est strictement positive. En particulier, si $d=2$, le deuxième exposant est strictement négatif.
LA - fre
KW - Lyapunov spectrum; Jacobi-Perron algorithm; product of stationary random matrices; periodic points; transfer operators
UR - http://eudml.org/doc/115925
ER -

References

top
  1. P. Arnoux, A. Nogueira, Mesures de Gauss pour des algorithmes de fractions continues, Ann. École Norm. Sup. 26 (1993), 645-664 Zbl0801.11036MR1251147
  2. G. Atkinson, Recurrence of cocycles and random walks, J. London Math. Soc. 13 (1976), 486-488 Zbl0342.60049MR419727
  3. P.R. Baldwin, A multidimensional continued fractions and some of its statistical properties, J. Stat. Physics 66 (1992), 1463-1505 Zbl0891.11039MR1156411
  4. P.R. Baldwin, A convergence exponent for multidimensional continued fractions algorithms, J. Stat. Physics 66 (1992), 1507-1526 Zbl0890.11024MR1156412
  5. A. Borel, Introduction aux groupes arithmétiques, (1969), Hermann, Paris Zbl0186.33202MR244260
  6. P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, 8 (1985), Birkhäuser Zbl0572.60001MR886674
  7. A. Broise, (1994) 
  8. A. Broise, Fractions continues multidimensionnelles et lois stables, Bull. Soc. Math. France 124 (1996), 97-139 Zbl0857.11035MR1395008
  9. J.W.S. Cassels, An introduction to diophantine approximation, (1957), Cambridge University Press, Cambridge Zbl0077.04801MR87708
  10. J.-P. Conze, Y. Guivarc'h, Limits sets of groups of linear transformations, Ergodic Theory and Harmonic Analysis 62, Pt 3 (2000), 367-385 Zbl1115.37305
  11. J.-P. Conze, A. Raugi, Fonctions harmoniques pour un opérateur de transition et applications, Bull. Soc. Math. France 118 (1990), 273-310 Zbl0725.60026MR1078079
  12. S.G. Dani, Dynamical systems on homogeneous spaces, Math. Physics I: Dynamical systems, Ergodic theory and Applications vol. 100, chap. 6 (2000), Springer Zbl06389526
  13. H. Furstenberg, Non commuting random products, Trans. Amer. Math. Soc. 108 (1963), 377-428 Zbl0203.19102MR163345
  14. I. Goldsheid, Y. Guivarc'h, Zariski closure and the dimension of the Gaussian law of the product of random matrices. I, Probab. Theory Relat. Fields 105 (1996), 109-142 Zbl0854.60006MR1389734
  15. I. Goldsheid, G.A. Margulis, Simplicity of the Liapunoff spectrum for product of random matrices, Soviet Math. 35 (1987), 309-313 Zbl0638.15010
  16. M. Gordin, Exponentially fast mixing, Sov. Math. Dokl. 12 (1971), 331-335 Zbl0269.60028
  17. W.L. Greenberg, Discrete groups with dense orbits, Flows on homogeneous spaces (1963), 85-103, Princeton University Press, Princeton 
  18. Y. Guivarc'h, Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés, Ergodic Th. Dynam. Systems 9 (1989), 433-453 Zbl0693.58011MR1016662
  19. Y. Guivarc'h, Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Th. Dynam. Systems 10 (1990), 483-512 Zbl0715.60008MR1074315
  20. Y. Guivarc'h, E. Le Page, Transformée de Laplace d'une mesure de probabilité sur le groupe linéaire et applications, (2000) 
  21. Y. Guivarc'h, A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahr. Verw. Geb. 69 (1985), 187-242 Zbl0558.60009MR779457
  22. Y. Guivarc'h, A. Raugi, Product of random matrices: convergence theorems, Contemp. Math. 50 (1986), 31-54 Zbl0592.60015MR841080
  23. Y. Guivarc'h, A. Raugi, Propriétés de contraction d’un semi-groupe de matrices inversibles. Cde Liapunoff d’un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), 165-196 Zbl0677.60007MR998669
  24. D.M. Hardcastle, K. Khanin, On almost everywhere strong convergence of multidimensionnal continued fractions algorithms, Ergodic Th. Dynam. Systems 20 (2000), 1711-1733 Zbl0977.11031MR1804954
  25. D.M. Hardcastle, K. Khanin, Continued fractions and the d-dimensionnal Gauss transformation, (2000) Zbl0984.11040MR1810942
  26. C.T. Ionescu-Tulcea, G. Marinescu, Théorie ergodique pour des classes d'opérations non complètement continues, Ann. Math. 52 (1950), 140-147 Zbl0040.06502MR37469
  27. S. Ito, M. Keane, M. Ohtsuki, Almost everywhere exponential convergence of the modified Jacobi-Perron algorithm, Ergodic Th. Dynam. Systems 13 (1993), 319-334 Zbl0846.28005MR1235475
  28. D.V. Kosygin, Multidimensional KAM theory from the renormalisation group viewpoint, Dynamical System and Statistical Mechanics 3 (1991), 99-130, AMS, Providence Zbl0731.58062
  29. J.C. Lagarias, The quality of the diophantine approximations found by the Jacobi-Perron and related algorithms, Mh. Math. 115 (1993), 299-328 Zbl0790.11059MR1230366
  30. J.C. Lagarias, Geodesic multidimensionnal continued fractions, Proc. Lond. Math. Soc., III 69 (1994), 464-488 Zbl0813.11040MR1289860
  31. E. Le Page, Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. Henri Poincaré 25 (1989), 109-142 Zbl0679.60010MR1001021
  32. D. Mayer, Approach to equilibrium for locally expanding maps in k , Comm. Math. Phys. 9 (1984), 1-15 Zbl0577.58022MR757051
  33. R. Meester, A simple proof of the exponential convergence of the modified Jacobi-Perron algorithm, Ergodic Th. Dynam. Systems 19 (1999), 1077-1083 Zbl1044.11074MR1709431
  34. P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, chap. I et IX (1927), Gauthier-Villars, Paris 
  35. A. Nogueira, The three-dimensional Poincaré continued fractions algorithm, Israel J. Math. 90 (1995), 373-401 Zbl0840.11030MR1336331
  36. V.I. Oseledets, A multiplicative ergodic theorem, Trans. Moscow Math. Soc. 19 (1968), 197-231 Zbl0236.93034MR240280
  37. R.E.A.C. Paley, H.D. Ursell, Continued fractions in several dimensions, Proc. Camb. Phil. Soc. 26 (1930), 127-144 Zbl56.1053.06
  38. O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann. 64 (1907), 1-76 Zbl38.0262.01MR1511422
  39. H. Poincaré, Sur une généralisation des fractions continues, C. R. Acad. Sci. Paris 99 (8 déc. 1884) 
  40. M.S. Raghunathan, A proof of Oseledets multiplicative ergodic theorem, Israel J. Math. 32 (1979), 356-362 Zbl0415.28013MR571089
  41. F. Schweiger, The metrical theory of the Jacobi-Perron algorithm, 334 (1973), Springer Zbl0287.10041MR345925
  42. F. Schweiger, A modified Jacobi-Perron algorithm with explicitely given invariant measure, 729 (1979), 199-202, Springer Zbl0411.28022
  43. F. Schweiger, The exponent of convergence for the two-dimensional Jacobi-Perron algorithm, Proceedings Conference on Analytic and Elementary Number Theory (1996), 207-213, Vienne Zbl0879.11044
  44. A. Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunoff exponents, Annales de l'Institut Fourier 46 (1996), 325-370 Zbl0853.28007MR1393518
  45. H. Kesten, Sums of stationary sequences cannot grow slower than linearly, Proc. Amer. Math. Soc. 49 (1975), 205-211 Zbl0299.28014MR370713
  46. T. Fujita, S. Ito, M. Keane, M. Ohtsuki, On almost everywhere exponential convergence of the modified Jacobi-Perron algorithm: A corrected proof., Ergodic Theory Dyn. Syst. 16 (1996), 1345-1352 Zbl0868.28008MR1424403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.