The based ring of the lowest two-sided cell of an affine Weyl group. II

Nanhua Xi

Annales scientifiques de l'École Normale Supérieure (1994)

  • Volume: 27, Issue: 1, page 47-61
  • ISSN: 0012-9593

How to cite

top

Xi, Nanhua. "The based ring of the lowest two-sided cell of an affine Weyl group. II." Annales scientifiques de l'École Normale Supérieure 27.1 (1994): 47-61. <http://eudml.org/doc/82358>.

@article{Xi1994,
author = {Xi, Nanhua},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {simple modules; Hecke algebra; affine Weyl group; Grothendieck group; lowest two-sided cell; isomorphism},
language = {eng},
number = {1},
pages = {47-61},
publisher = {Elsevier},
title = {The based ring of the lowest two-sided cell of an affine Weyl group. II},
url = {http://eudml.org/doc/82358},
volume = {27},
year = {1994},
}

TY - JOUR
AU - Xi, Nanhua
TI - The based ring of the lowest two-sided cell of an affine Weyl group. II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1994
PB - Elsevier
VL - 27
IS - 1
SP - 47
EP - 61
LA - eng
KW - simple modules; Hecke algebra; affine Weyl group; Grothendieck group; lowest two-sided cell; isomorphism
UR - http://eudml.org/doc/82358
ER -

References

top
  1. [IH] N. IWAHORI and H. MATSUMOTO, On Some Bruhat Decomposition and the structure of the Hecke Ring of p-Adic Chevalley Groups (Publ. math. IHES, Vol. 25, 1965, pp. 237-280). Zbl0228.20015MR32 #2486
  2. [KL1] D. KAZHDAN and G. LUSZTIG, Representations of Coxeter Groups and Hecke algebras (Inventiones Math., Vol. 53, 1979, pp. 165-184). Zbl0499.20035MR81j:20066
  3. [KL2] D. KAZHDAN and G. LUSZTIG, Proof of the Deligne-Langlands Conjecture for Hecke Algebra (Inventiones Math., Vol. 87, 1987, pp. 153-215). Zbl0613.22004MR88d:11121
  4. [L1] G. LUSZTIG, Some Examples on Square Integrable Representations of Semisimple p-Adic Groups (Trans. of the AMS, Vol. 277, 1983, pp. 623-653). Zbl0526.22015MR84j:22023
  5. [L2] G. LUSZTIG, Singularities, Character Formulas, and a q-analog of Weight Multiplicities, in Analyse et Topologie sur les Espaces Singuliers (II-III) (Astérisque, Vol. 101-102, 1983, pp. 208-227). Zbl0561.22013MR85m:17005
  6. [L3] G. LUSZTIG, Cells in affine Weyl groups, I-IV, in Algebraic Groups and Related Topics, pp. 255-287. Adv. Studies in Pure Math., Vol. 6, North Holland, Amsterdam, 1985 ; J. Algebra, Vol. 109, 1987, pp. 536-548 ; J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 34, 1987, pp. 223-243, Vol. 36, 1989, No. 2, pp. 297-328. MR87h:20074
  7. [LX] G. LUSZTIG and N. XI, Canonical Left Cells in Affine Weyl Groups (Adv. in Math., Vol. 72, 1988, pp. 284-288). Zbl0664.20028MR89m:17027
  8. [S] J.-Y. SHI, A Two-Sided Cell in an Affine Weyl Group, I, II (J. London Math. Soc., (2), Vol. 36, 1987, pp. 407-420 ; Vol. 37, 1988, pp. 253-264. Zbl0598.20045MR89a:20055
  9. [X] N. XI, The Based Ring of the Lowest Two-Sided Cell of an Affine Weyl Group (J. Algebra, Vol. 134, 1990, pp. 356-368). Zbl0709.20021MR91j:20104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.