Equivariant cyclic homology and equivariant differential forms

Jonathan Block; Ezra Getzler

Annales scientifiques de l'École Normale Supérieure (1994)

  • Volume: 27, Issue: 4, page 493-527
  • ISSN: 0012-9593

How to cite

top

Block, Jonathan, and Getzler, Ezra. "Equivariant cyclic homology and equivariant differential forms." Annales scientifiques de l'École Normale Supérieure 27.4 (1994): 493-527. <http://eudml.org/doc/82368>.

@article{Block1994,
author = {Block, Jonathan, Getzler, Ezra},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {smooth action; compact Lie group; Hochschild cohomology; cyclic homology; equivariant periodic cyclic homology; equivariant -theory},
language = {eng},
number = {4},
pages = {493-527},
publisher = {Elsevier},
title = {Equivariant cyclic homology and equivariant differential forms},
url = {http://eudml.org/doc/82368},
volume = {27},
year = {1994},
}

TY - JOUR
AU - Block, Jonathan
AU - Getzler, Ezra
TI - Equivariant cyclic homology and equivariant differential forms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1994
PB - Elsevier
VL - 27
IS - 4
SP - 493
EP - 527
LA - eng
KW - smooth action; compact Lie group; Hochschild cohomology; cyclic homology; equivariant periodic cyclic homology; equivariant -theory
UR - http://eudml.org/doc/82368
ER -

References

top
  1. [1] P. BAUM, J. L. BRYLINSKI and R. MACPHERSON, Cohomologie équivariante délocalisée (C. R. Acad. Sci. Paris, Vol. 300, 1985, pp. 605-608). Zbl0589.55003MR86g:55006
  2. [2] N. BERLINE and M. VERGNE, The equivariant index and Kirillov character formula (Amer. J. Math., Vol. 107, 1985, pp. 1159-1190). Zbl0604.58046MR87a:58143
  3. [3] J. BLOCK, Excision in cyclic homology of topological algebras, Harvard University thesis, 1987. 
  4. [4] J. L. BRYLINSKI, Algebras associated with group actions and their homology, Brown University preprint, 1986. 
  5. [5] J. L. BRYLINSKI, Cyclic homology and equivariant theories (Ann. Inst. Fourier, Vol. 37, pp. 15-28). Zbl0625.55003MR89j:55008
  6. [6] A. CONNES, Cohomologie cyclique et foncteurs Extn (C. R. Acad. Sci. Paris, Vol. 296, 1983, pp. 953-958). Zbl0534.18009MR86d:18007
  7. [7] A. CONNES, Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules, K-Theory, Vol. 1, 1988, pp. 519-548. Zbl0657.46049MR90c:46094
  8. [8] R. K. DENNIS and K. IGUSA, Hochschild homology and the second obstruction for pseudoisotopy, in Algebraic K-Theory (Lect. Notes in Math., Vol. 966, Springer-Verlag, Berlin-Heidelberg-New York, 1982). Zbl0524.57020MR84m:18014
  9. [9] B. V. FEDOSOV, Analytic formulas for the index of elliptic operators (Trans. Moscow Math. Soc., Vol. 30, 1974, pp. 159-240). Zbl0349.58006MR54 #8743
  10. [10] E. GETZLER and J. D. S. JONES, A∞-algebras and the cyclic bar complex (Illinois J. Math., Vol. 34, 1989, pp. 256-283). Zbl0701.55009MR91e:19001
  11. [11] E. GETZLER and A. SZENES, On the Chern character of theta-summable Fredholm modules (J. Func. Anal., Vol. 84, 1989, pp. 343-357). Zbl0686.46044MR91g:19007
  12. [12] G. D. MOSTOV, Equivariant imbeddings in Euclidean space (Ann. Math., Vol. 65, 1957, pp. 432-446). Zbl0080.16701
  13. [13] R. PALAIS, Imbedding of compact, differentiable transformation groups in orthogonal representations (J. Math. Mech., Vol. 6, 1957, pp. 673-678). Zbl0086.02603MR19,1181e
  14. [14] G. B. SEGAL, Equivariant K-theory (Publ. Math. IHES, Vol. 34, 1968, pp. 129-151). Zbl0199.26202MR38 #2769
  15. [15] J. L. TAYLOR, Homology and cohomology of topological algebras (Adv. Math., Vol. 9, 1972, pp. 137-182). Zbl0271.46040MR48 #6966
  16. [16] J.-C. TOUGERON, Idéaux de fonctions différentiables, Springer, Berlin-Heidelberg-New York, 1972. Zbl0251.58001MR55 #13472
  17. [17] A. G. WASSERMAN, Equivariant differential topology (Topology, Vol. 8, 1969, pp. 127-150). Zbl0215.24702MR40 #3563
  18. [18] M. WODZICKI, Excision in cyclic homology and rational algebraic K-theory (Ann. Math., Vol. 129, 1989, pp. 591-639). Zbl0689.16013MR91h:19008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.