Equivariant cyclic homology and equivariant differential forms
Annales scientifiques de l'École Normale Supérieure (1994)
- Volume: 27, Issue: 4, page 493-527
- ISSN: 0012-9593
Access Full Article
topHow to cite
topReferences
top- [1] P. BAUM, J. L. BRYLINSKI and R. MACPHERSON, Cohomologie équivariante délocalisée (C. R. Acad. Sci. Paris, Vol. 300, 1985, pp. 605-608). Zbl0589.55003MR86g:55006
- [2] N. BERLINE and M. VERGNE, The equivariant index and Kirillov character formula (Amer. J. Math., Vol. 107, 1985, pp. 1159-1190). Zbl0604.58046MR87a:58143
- [3] J. BLOCK, Excision in cyclic homology of topological algebras, Harvard University thesis, 1987.
- [4] J. L. BRYLINSKI, Algebras associated with group actions and their homology, Brown University preprint, 1986.
- [5] J. L. BRYLINSKI, Cyclic homology and equivariant theories (Ann. Inst. Fourier, Vol. 37, pp. 15-28). Zbl0625.55003MR89j:55008
- [6] A. CONNES, Cohomologie cyclique et foncteurs Extn (C. R. Acad. Sci. Paris, Vol. 296, 1983, pp. 953-958). Zbl0534.18009MR86d:18007
- [7] A. CONNES, Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules, K-Theory, Vol. 1, 1988, pp. 519-548. Zbl0657.46049MR90c:46094
- [8] R. K. DENNIS and K. IGUSA, Hochschild homology and the second obstruction for pseudoisotopy, in Algebraic K-Theory (Lect. Notes in Math., Vol. 966, Springer-Verlag, Berlin-Heidelberg-New York, 1982). Zbl0524.57020MR84m:18014
- [9] B. V. FEDOSOV, Analytic formulas for the index of elliptic operators (Trans. Moscow Math. Soc., Vol. 30, 1974, pp. 159-240). Zbl0349.58006MR54 #8743
- [10] E. GETZLER and J. D. S. JONES, A∞-algebras and the cyclic bar complex (Illinois J. Math., Vol. 34, 1989, pp. 256-283). Zbl0701.55009MR91e:19001
- [11] E. GETZLER and A. SZENES, On the Chern character of theta-summable Fredholm modules (J. Func. Anal., Vol. 84, 1989, pp. 343-357). Zbl0686.46044MR91g:19007
- [12] G. D. MOSTOV, Equivariant imbeddings in Euclidean space (Ann. Math., Vol. 65, 1957, pp. 432-446). Zbl0080.16701
- [13] R. PALAIS, Imbedding of compact, differentiable transformation groups in orthogonal representations (J. Math. Mech., Vol. 6, 1957, pp. 673-678). Zbl0086.02603MR19,1181e
- [14] G. B. SEGAL, Equivariant K-theory (Publ. Math. IHES, Vol. 34, 1968, pp. 129-151). Zbl0199.26202MR38 #2769
- [15] J. L. TAYLOR, Homology and cohomology of topological algebras (Adv. Math., Vol. 9, 1972, pp. 137-182). Zbl0271.46040MR48 #6966
- [16] J.-C. TOUGERON, Idéaux de fonctions différentiables, Springer, Berlin-Heidelberg-New York, 1972. Zbl0251.58001MR55 #13472
- [17] A. G. WASSERMAN, Equivariant differential topology (Topology, Vol. 8, 1969, pp. 127-150). Zbl0215.24702MR40 #3563
- [18] M. WODZICKI, Excision in cyclic homology and rational algebraic K-theory (Ann. Math., Vol. 129, 1989, pp. 591-639). Zbl0689.16013MR91h:19008