Equivariant K -theory

Graeme Segal

Publications Mathématiques de l'IHÉS (1968)

  • Volume: 34, page 129-151
  • ISSN: 0073-8301

How to cite

top

Segal, Graeme. "Equivariant $K$-theory." Publications Mathématiques de l'IHÉS 34 (1968): 129-151. <http://eudml.org/doc/103880>.

@article{Segal1968,
author = {Segal, Graeme},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {topology},
language = {eng},
pages = {129-151},
publisher = {Institut des Hautes Études Scientifiques},
title = {Equivariant $K$-theory},
url = {http://eudml.org/doc/103880},
volume = {34},
year = {1968},
}

TY - JOUR
AU - Segal, Graeme
TI - Equivariant $K$-theory
JO - Publications Mathématiques de l'IHÉS
PY - 1968
PB - Institut des Hautes Études Scientifiques
VL - 34
SP - 129
EP - 151
LA - eng
KW - topology
UR - http://eudml.org/doc/103880
ER -

References

top
  1. [1] M. F. ATIYAH, Power operations in K-theory, Quart. J. of Math. (Oxford), 17 (1966), 165-193. Zbl0144.44901MR34 #2004
  2. [2] M. F. ATIYAH, Lectures on K-theory, mimeographed, Harvard, 1964. 
  3. [3] M. F. ATIYAH and R. BOTT, On the periodicity theorem for complex vector bundles, Acta mathematica, 112 (1964), 229-247. Zbl0131.38201MR31 #2727
  4. [4] M. F. ATIYAH, R. BOTT and A. SHAPIRO, Clifford modules, Topology, 3 (Suppl. 1) (1964), 3-38. Zbl0146.19001MR29 #5250
  5. [5] M. F. ATIYAH and F. HIRZEBRUCH, Vector bundles and homogeneous spaces, Differential geometry, Proc. of Symp. in Pure Math., 3 (1961), Amer. Math. Soc., 7-38. Zbl0108.17705MR25 #2617
  6. [6] M. F. ATIYAH, I. M. SINGER, etc., The index of elliptic operators I, II (To appear). Zbl0164.24001
  7. [7] A. BOREL et al., Seminar on transformation groups, Ann. of Math. Studies, n° 46, Princeton, 1960. Zbl0091.37202MR22 #7129
  8. [8] N. BOURBAKI, Intégration, chap. 1-4, Paris, Hermann, 1952, A.S.I., 1175. Zbl0049.31703
  9. [9] H. CARTAN and S. EILENBERG, Homological algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
  10. [10] S. EILENBERG and N. E. STEENROD, Foundations of algebraic topology, Princeton University Press, 1952. Zbl0047.41402MR14,398b
  11. [11] L. ILLUSIE, Nombres de Chern et groupes finis (To appear). 
  12. [12] G. D. MOSTOW, Cohomology of topological groups and solvmanifolds, Ann. of Math., 73 (1961), 20-48. Zbl0103.26501MR23 #A2484
  13. [13] R. S. PALAIS, The classification of G-spaces, Mem. Amer. Math. Soc., n° 36, 1960. Zbl0119.38403MR31 #1664
  14. [14] R. S. PALAIS, On the existence of slices for actions of non-compact Lie groups, Ann. of Math., 73 (1961), 295-323. Zbl0103.01802MR23 #A3802
  15. [15] G. B. SEGAL, Classifying-spaces and spectral sequences, Publ. Math. Inst. des Hautes études Scient. (Paris), 34 (1968). Zbl0199.26404MR38 #718
  16. [16] G. B. SEGAL, The representation-ring of a compact Lie group, Publ. Math. Inst. des Hautes études Scient. (Paris), 34 (1968). Zbl0209.06203MR40 #1529

Citations in EuDML Documents

top
  1. John Frank Adams, La conjecture de Segal
  2. Graeme Segal, Classifying spaces and spectral sequences
  3. Jean-Yves Le Dimet, G -variétés topologiques et G -microfibrés
  4. Éric Vasserot, Représentations de groupes quantiques et permutations
  5. Jonathan Block, Ezra Getzler, Equivariant cyclic homology and equivariant differential forms
  6. Abdelouahab Arouche, Sur la complétion de la K -théorie équivariante
  7. Jean-Luc Brylinski, Cyclic homology and equivariant theories
  8. Jure Kališnik, Representations of étale Lie groupoids and modules over Hopf algebroids
  9. Jean-Louis Tu, Ping Xu, Camille Laurent-Gengoux, Twisted K-theory of differentiable stacks
  10. Jonathan Rosenberg, Samuel Weinberger, Higher G -indices and applications

NotesEmbed ?

top

You must be logged in to post comments.