Relative duality for quasi-coherent sheaves

Steven L. Kleiman

Compositio Mathematica (1980)

  • Volume: 41, Issue: 1, page 39-60
  • ISSN: 0010-437X

How to cite

top

Kleiman, Steven L.. "Relative duality for quasi-coherent sheaves." Compositio Mathematica 41.1 (1980): 39-60. <http://eudml.org/doc/89450>.

@article{Kleiman1980,
author = {Kleiman, Steven L.},
journal = {Compositio Mathematica},
keywords = {Quasi-Coherent Sheaf; Cohen-Macaulay; Duality Theory; Cohomology},
language = {eng},
number = {1},
pages = {39-60},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Relative duality for quasi-coherent sheaves},
url = {http://eudml.org/doc/89450},
volume = {41},
year = {1980},
}

TY - JOUR
AU - Kleiman, Steven L.
TI - Relative duality for quasi-coherent sheaves
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 41
IS - 1
SP - 39
EP - 60
LA - eng
KW - Quasi-Coherent Sheaf; Cohen-Macaulay; Duality Theory; Cohomology
UR - http://eudml.org/doc/89450
ER -

References

top
  1. [1] A. Altman and S. Kleiman: Introduction to Grothendieck Duality Theory. Lecture Notes in Math.146, Springer (1970). Zbl0215.37201MR274461
  2. [2] A. Altman and S. Kleiman: "Compactifying the Picard scheme", (to appear in Adv. Math.). Zbl0427.14015MR555258
  3. [SGA 6] P. Berthelot, et alii, Theorie des Intersections et Théorème de Riemann-Roch, Lecture Notes in Math. 225, Springer (1971). Zbl0218.14001MR354655
  4. [4] P. Deligne and M. Rapoport: "Les Schémas de Modules de Courbes Elliptiques ", in Modular Functions of One Variable II, Lecture Notes in Math349, Springer (1973). Zbl0281.14010MR337993
  5. [SGA 3] M. Demazure and A. Grothendieck, Schémas en Groupes I, Lecture Notes in Math. 151, Springer (1970). Zbl0207.51401MR274458
  6. [5] R. Godement, Topologie Algébrique et Théorie des Faisceaux, Hermann, Paris (1958). Zbl0080.16201MR102797
  7. [6] A. Grothendieck, Théorème de dualité pour les faisceaux algébriques cohérents", Seminaire Bourbaki, 149 (May 1957). Zbl0227.14014
  8. [7] A. Grothendieck, "Technique de descente et théorèmes d'existence en géométrie algébrique IV. Les schémas de Hilbert", Séminaire Bourbaki221 (May 1961). Zbl0236.14003
  9. [EGA OI, 1] A. Grothendieck and J. Dieudonné: Eléments de Géométrie Algébrique I, Grundlehren der math. Wissenschaften166, Springer (1971). Zbl0203.23301
  10. [EGA II-IV4] A. Grothendieck and J. Dieudonné: Eléments de Géométrie Algébrique, Publ. Math. I.H.E.S., Nos. 8, 11, 17, 20, 24, 28, 32 (1961, '61, '63, '64, '65, '66, '67). 
  11. [10] R. Hartshorne: Residues and Duality, Lecture Notes in Math.20, Springer (1966). Zbl0212.26101MR222093
  12. [11] K. Lønsted and S. Kleiman: "Basics on Families of Hyperelliptic Curves", Compositio Math., 38(1) (1979) 83-111. Zbl0406.14017MR523266
  13. [12] S. Maclane: Categories for the Working Mathematician, Graduate Texts in Math.5, Springer (1971). Zbl0232.18001MR354798
  14. [13] A. Mattuck: "Secant Bundles on Symmetric Products", American Journal Math., LXXXVII, 4 (1965), 779-797. Zbl0196.53503MR199196
  15. [14] D. Mumford: Lectures on Curves on an Algebraic Surface, Annals of Math. Studies No. 59, Princeton Univ. Press (1966). Zbl0187.42701MR209285
  16. [15] J.-L. Verdier: "Duality dans la cohomologie des espaces localement compacts", Séminaire Bourbaki, 300 (Nov. 1965). Zbl0268.55006
  17. [16] J.-L. Verdier: "Base change for twisted inverse image of coherent sheaves", in Algebraic Geometry, Bombay1968, Oxford (1969), 393-408. Zbl0202.19902MR274464

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.