Some results on the admissible representations of non-connected reductive p -adic groups

David Goldberg; Rebecca Herb

Annales scientifiques de l'École Normale Supérieure (1997)

  • Volume: 30, Issue: 1, page 97-146
  • ISSN: 0012-9593

How to cite

top

Goldberg, David, and Herb, Rebecca. "Some results on the admissible representations of non-connected reductive $p$-adic groups." Annales scientifiques de l'École Normale Supérieure 30.1 (1997): 97-146. <http://eudml.org/doc/82427>.

@article{Goldberg1997,
author = {Goldberg, David, Herb, Rebecca},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-adic reductive group; -groups; intertwining operators; induced representation},
language = {eng},
number = {1},
pages = {97-146},
publisher = {Elsevier},
title = {Some results on the admissible representations of non-connected reductive $p$-adic groups},
url = {http://eudml.org/doc/82427},
volume = {30},
year = {1997},
}

TY - JOUR
AU - Goldberg, David
AU - Herb, Rebecca
TI - Some results on the admissible representations of non-connected reductive $p$-adic groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 1
SP - 97
EP - 146
LA - eng
KW - -adic reductive group; -groups; intertwining operators; induced representation
UR - http://eudml.org/doc/82427
ER -

References

top
  1. [1] J. ARTHUR, Unipotent automorphic representations : conjectures (Société Mathématique de France, Astérisque, Vol. 171-172, 1989, pp. 13-71). Zbl0728.22014MR91f:22030
  2. [2] J. ARTHUR, On elliptic tempered characters (Acta Math., Vol. 171, 1993, pp. 73-138). Zbl0822.22011MR94i:22038
  3. [3] A. BOREL and N. WALLACH, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups (Annals of Math. Studies, no. 94, Princeton University Press, Princeton, NJ, 1980). Zbl0443.22010MR83c:22018
  4. [4] L. CLOZEL, Characters of non-connected reductive p-adic groups (Canad. J. Math., Vol. 39, 1987, pp. 149-167). Zbl0629.22008MR88i:22039
  5. [5] S. S. GELBART and A. KNAPP, L-indistinguishability and R groups for the special linear group (Adv. in Math., Vol. 43, 1982, pp. 101-121). Zbl0493.22005MR83j:22009
  6. [6] D. GOLDBERG, Reducibility for non-connected p-adic groups with G° of prime index (Canad. J. Math., Vol. 47, 1995, pp. 344-363). Zbl0835.22015MR96d:22003
  7. [7] HARISH-CHANDRA, Harmonic analysis on reductive p-adic groups (Proc. Sympos. Pure Math., Vol. 26, 1973, pp. 167-192). Zbl0289.22018MR49 #5238
  8. [8] HARISH-CHANDRA, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula (Ann. of Math., (2), Vol. 104, 1976, pp. 117-201. Zbl0331.22007MR55 #12875
  9. [9] A. W. KNAPP and G. ZUCKERMAN, Classification of irreducible tempered representations of semisimple Lie groups, (Proc. Nat. Acad. Sci. U.S.A., Vol. 73, 1976, pp. 2178-2180. Zbl0329.22013MR57 #538
  10. [10] R. P. LANGLANDS, On the classification of irreducible representations of real algebraic groups, in Representation Theory and Harmonic Analysis on Semisimple Lie Groups (Mathematical Surveys and Monograph, no. 31, American Mathematical Society, Providence, RI, 1989, pp. 101-170). Zbl0741.22009MR91e:22017
  11. [11] J. D. ROGAWSKI, Trace Paley-Wiener theorem in the twisted case (Trans. Amer. Math. Soc., Vol. 309, 1988, pp. 215-229). Zbl0663.22011MR89k:22035
  12. [12] D. SHELSTAD, L-indistinguishability for real groups, (Math. Ann., Vol. 259, 1982, pp. 385-430). Zbl0506.22014MR84c:22017
  13. [13] A. J. SILBERGER, Introduction to Harmonic Analysis on Reductive p-adic Groups (Mathematical Notes, no. 23, Princeton University Press, Princeton, NJ, 1979. Zbl0458.22006MR81m:22025
  14. [14] M. TADIC, Notes on representations of non-archimedean SL(n) (Pacific J. Math., Vol. 152, 1992, pp. 375-396). Zbl0724.22017MR92k:22029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.