Geodesic laminations with transverse Hölder distributions

Francis Bonahon

Annales scientifiques de l'École Normale Supérieure (1997)

  • Volume: 30, Issue: 2, page 205-240
  • ISSN: 0012-9593

How to cite

top

Bonahon, Francis. "Geodesic laminations with transverse Hölder distributions." Annales scientifiques de l'École Normale Supérieure 30.2 (1997): 205-240. <http://eudml.org/doc/82430>.

@article{Bonahon1997,
author = {Bonahon, Francis},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {geodesic lamination; hyperbolic geometry; length function; measured lamination},
language = {eng},
number = {2},
pages = {205-240},
publisher = {Elsevier},
title = {Geodesic laminations with transverse Hölder distributions},
url = {http://eudml.org/doc/82430},
volume = {30},
year = {1997},
}

TY - JOUR
AU - Bonahon, Francis
TI - Geodesic laminations with transverse Hölder distributions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 2
SP - 205
EP - 240
LA - eng
KW - geodesic lamination; hyperbolic geometry; length function; measured lamination
UR - http://eudml.org/doc/82430
ER -

References

top
  1. [BiS] J. S. BIRMAN, C. Series, Geodesics with bounded intersection numbers on surfaces are sparsely distributed (Topology, Vol. 24, 1985, pp. 217-225). Zbl0568.57006MR87f:57012
  2. [Bo1] F. BONAHON, Bouts des variétés hyperboliques de dimension 3 (Ann. of Math., Vol. 124, 1986, pp. 71-158). Zbl0671.57008MR88c:57013
  3. [Bo2] F. BONAHON, The geometry of Teichmüller space via geodesic currents (Invent. Math., Vol. 92, 1988, pp. 139-162). Zbl0653.32022MR90a:32025
  4. [Bo3] F. BONAHON, Ensembles limites et applications (45 minute address), Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 1990 Springer-Verlag, Berlin Heidelberg, New York, 1991, pp. 599-608. Zbl0747.58022MR93d:57020
  5. [Bo4] F. BONAHON, Transverse Hölder distributions for geodesic laminations, to appear in Topology. Zbl0871.57027
  6. [Bo5] F. BONAHON, Shearing hyperbolic surfaces, bending pleated surfaces, and Thurston's, symplectic form (Ann. Fac. Sci. Toulouse, Vol. 5, 1996, pp. 233-297). Zbl0880.57005MR97i:57011
  7. [Bo6] F. BONAHON, Variations of the boundary geometry of convex cores of hyperbolic 3-manifolds, preprint, 1996. 
  8. [Bo7] F. BONAHONA Schläfli-type formula for the volume of convex cores of hyperbolic 3-manifolds, in preparation. 
  9. [CEG] R. D. CANARY, D. B. A. EPSTEIN and P. GREEN, Notes on notes of Thurston (Analytical and Geometrical aspects of Hyperbolic space, D. B. A. Epstein ed., LMS Lecture Notes Series Vol. 111, 1987 Cambridge University Press, pp. 3-92). Zbl0612.57009MR89e:57008
  10. [CaB] A. CASSON and S. A. BLEILER, Automorphisms of surfaces after Thurston and Nielsen, 1988 Cambridge University Press. Zbl0649.57008
  11. [EpM] D. B. A. EPSTEIN and A. MARDEN, Convex hulls in hyperbolic spaces, a theorem of Sullivan, and measured pleated surfaces (Analytical and geometric aspects of hyperbolic space, D. B. A. Epstein ed., 1986, Cambridge University Press, pp. 113-253). Zbl0612.57010MR89c:52014
  12. [FLP] A. FATHI, F. LAUDENBACH and V. POENARU, Travaux de Thurston sur les surfaces (Astérisque 66-67, Société Mathématique de France, 1979). MR82m:57003
  13. [Fl] W. J. FLOYD, Group completions and limit sets of Kleinian groups (Invent. Math., Vol. 57, 1980, pp. 205-218). Zbl0428.20022MR81e:57002
  14. [Gh] E. GHYS, Le cercle à l'infini des surfaces à courbure négative, (45 minute address) (Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 1990, Springer-Verlag, Berlin, Heidelberg, New York, 1991, pp. 501-509). Zbl0747.53032MR93f:58188
  15. [Gr] M. GROMOV, Hyperbolic groups, (Essays in group theory, S. M. Gersten ed., MSRI Publications, Vol. 8, Springer-Verlag, Berlin, Heidelberg, New York, 1987, pp. 75-263). Zbl0634.20015MR89e:20070
  16. [Ka] A. KATOK, Invariant measures of flows on oriented surfaces, (Soviet Math. Dokl., Vol. 14, 1973, pp. 1104-1108). Zbl0298.28013
  17. [Ke] S. P. KERCKHOFF, The Nielsen realization problem (Ann. of Math., Vol. 117, 1983, pp. 235-265). Zbl0528.57008MR85e:32029
  18. [Le] G. LEVITT, Foliations and laminations on hyperbolic surfaces (Topology, Vol. 22, 1983, pp. 119-135). Zbl0522.57027MR84h:57015
  19. [Mo] H. M. MORSE, A one-to-one representation of geodesics on a surface of negative curvature (Amer. J. Math., Vol. 43, 1921, pp. 33-51). Zbl48.0786.05JFM48.0786.05
  20. [Pa] A. PAPADOPOULOS, Geometric intersection functions and Hamiltonian flows on the space of measured foliations of a surface (Pacific J. Math., Vol. 124, 1986, pp. 375-402). Zbl0608.58036MR88c:58017
  21. [PeH] R. C. PENNER and J. L. HARER, Combinatorics of train tracks (Ann. Math. Studies, Vol. 125, Princeton Univ. Press, 1992). Zbl0765.57001MR94b:57018
  22. [Pl] J. PLANTE, Foliations with measure preserving holonomy (Ann. Math., Vol. 127, 1975, pp. 327-362). Zbl0314.57018MR52 #11947
  23. [Th1] W. P. THURSTON, The topology and geometry of 3-manifolds, Lecture Notes, Princeton University, 1976-1979). 
  24. [Th2] W. P. THURSTON, Earthquakes in two-dimensional hyperbolic geometry (Low-dimensional Topology and Kleinian groups, D. B. A. Epstein ed., 1986 Cambridge University press, pp. 91-112). Zbl0628.57009MR88m:57015
  25. [Th3] W. P. THURSTON, On the geometry and dynamics of diffeomorphisms of surfaces (Bull. Amer. Math. Soc., Vol. 19, 1988, pp. 417-431). Zbl0674.57008MR89k:57023
  26. [Th4] W. P. THURSTON, Minimal stretch maps between hyperbolic surfaces, unpublished preprint, ca 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.