Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space
Thierry Barbot[1]; François Béguin[2]; Abdelghani Zeghib[3]
- [1] Université d’Avignon et des pays de Vaucluse Faculté des Sciences Laboratoire d’Analyse non Linéaire et Géométrie 33 rue Louis Pasteur 84000 Avignon (France)
- [2] Université Paris Sud Laboratoire de Mathématiques Bâtiment 425 91425 Orsay Cedex (France)
- [3] École Normale Supérieure de Lyon CNRS, UMPA 46, allée d’Italie 69364 LYON Cedex 07(France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 2, page 511-591
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBarbot, Thierry, Béguin, François, and Zeghib, Abdelghani. "Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space." Annales de l’institut Fourier 61.2 (2011): 511-591. <http://eudml.org/doc/219723>.
@article{Barbot2011,
abstract = {We study the existence of surfaces with constant or prescribed Gauss curvature in certain Lorentzian spacetimes. We prove in particular that every (non-elementary) 3-dimensional maximal globally hyperbolic spatially compact spacetime with constant non-negative curvature is foliated by compact spacelike surfaces with constant Gauss curvature. In the constant negative curvature case, such a foliation exists outside the convex core. The existence of these foliations, together with a theorem of C. Gerhardt, yield several corollaries. For example, they allow to solve the Minkowski problem in $\mathrm\{Min\}_\{3\}$ for data that are invariant under the action of a co-compact Fuchsian group.},
affiliation = {Université d’Avignon et des pays de Vaucluse Faculté des Sciences Laboratoire d’Analyse non Linéaire et Géométrie 33 rue Louis Pasteur 84000 Avignon (France); Université Paris Sud Laboratoire de Mathématiques Bâtiment 425 91425 Orsay Cedex (France); École Normale Supérieure de Lyon CNRS, UMPA 46, allée d’Italie 69364 LYON Cedex 07(France)},
author = {Barbot, Thierry, Béguin, François, Zeghib, Abdelghani},
journal = {Annales de l’institut Fourier},
keywords = {Gauss curvature; $K$-curvature; Minkowski problem; -curvature},
language = {eng},
number = {2},
pages = {511-591},
publisher = {Association des Annales de l’institut Fourier},
title = {Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space},
url = {http://eudml.org/doc/219723},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Barbot, Thierry
AU - Béguin, François
AU - Zeghib, Abdelghani
TI - Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 511
EP - 591
AB - We study the existence of surfaces with constant or prescribed Gauss curvature in certain Lorentzian spacetimes. We prove in particular that every (non-elementary) 3-dimensional maximal globally hyperbolic spatially compact spacetime with constant non-negative curvature is foliated by compact spacelike surfaces with constant Gauss curvature. In the constant negative curvature case, such a foliation exists outside the convex core. The existence of these foliations, together with a theorem of C. Gerhardt, yield several corollaries. For example, they allow to solve the Minkowski problem in $\mathrm{Min}_{3}$ for data that are invariant under the action of a co-compact Fuchsian group.
LA - eng
KW - Gauss curvature; $K$-curvature; Minkowski problem; -curvature
UR - http://eudml.org/doc/219723
ER -
References
top- L. Andersson, T. Barbot, F. Béguin, A. Zeghib, Cosmological time versus CMC time I: Flat spacetimes Zbl1246.53093
- L. Andersson, T. Barbot, F. Béguin, A. Zeghib, Cosmological time versus CMC time II: the de Sitter and anti-de Sitter cases Zbl1246.53093
- Lars Andersson, Constant mean curvature foliations of flat space-times, Comm. Anal. Geom. 10 (2002), 1125-1150 Zbl1038.53025MR1957665
- Lars Andersson, Constant mean curvature foliations of simplicial flat spacetimes, Comm. Anal. Geom. 13 (2005), 963-979 Zbl1123.53034MR2216148
- Lars Andersson, Gregory J. Galloway, Ralph Howard, The cosmological time function, Classical Quantum Gravity 15 (1998), 309-322 Zbl0911.53039MR1606594
- Lars Andersson, Vincent Moncrief, Future complete vacuum spacetimes, The Einstein equations and the large scale behavior of gravitational fields (2004), 299-330, Birkhäuser, Basel Zbl1105.83001MR2098919
- Lars Andersson, Vincent Moncrief, Anthony J. Tromba, On the global evolution problem in gravity, J. Geom. Phys. 23 (1997), 191-205 Zbl0898.58003MR1484587
- Máximo Bañados, Marc Henneaux, Claudio Teitelboim, Jorge Zanelli, Geometry of the black hole, Phys. Rev. D (3) 48 (1993), 1506-1525 MR1236812
- Thierry Barbot, Globally hyperbolic flat space-times, J. Geom. Phys. 53 (2005), 123-165 Zbl1087.53065MR2110829
- Thierry Barbot, Causal properties of AdS-isometry groups. II. BTZ multi-black-holes, Adv. Theor. Math. Phys. 12 (2008), 1209-1257 Zbl1153.83349MR2443264
- Thierry Barbot, François Béguin, Abdelghani Zeghib, Feuilletages des espaces temps globalement hyperboliques par des hypersurfaces à courbure moyenne constante, C. R. Math. Acad. Sci. Paris 336 (2003), 245-250 Zbl1026.53015MR1968267
- Thierry Barbot, François Béguin, Abdelghani Zeghib, Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on , Geom. Dedicata 126 (2007), 71-129 Zbl1255.83118MR2328923
- Thierry Barbot, Abdelghani Zeghib, Group actions on Lorentz spaces, mathematical aspects: a survey, The Einstein equations and the large scale behavior of gravitational fields (2004), 401-439, Birkhäuser, Basel Zbl1064.53049MR2098923
- Robert Bartnik, Leon Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys. 87 (1982/83), 131-152 Zbl0512.53055MR680653
- Pierre Bayard, Dirichlet problem for space-like hypersurfaces with prescribed scalar curvature in , Calc. Var. Partial Differential Equations 18 (2003), 1-30 Zbl1043.53027MR2001880
- Pierre Bayard, Entire spacelike hypersurfaces of prescribed scalar curvature in Minkowski space, Calc. Var. Partial Differential Equations 26 (2006), 245-264 Zbl1114.35069MR2222246
- John K. Beem, Paul E. Ehrlich, Kevin L. Easley, Global Lorentzian geometry, 202 (1996), Marcel Dekker Inc., New York Zbl0462.53001MR1384756
- Riccardo Benedetti, Francesco Bonsante, Canonical Wick rotations in 3-dimensional gravity, Mem. Amer. Math. Soc. 198 (2009) Zbl1165.53047MR2499272
- Riccardo Benedetti, Enore Guadagnini, Cosmological time in -gravity, Nuclear Phys. B 613 (2001), 330-352 Zbl0970.83039MR1857817
- M. S. Berger, Riemannian structure of prescribed Gauss curvature for 2-manifolds, J. Diff. Geom. 5 (1971), 325-332 Zbl0222.53042MR295261
- Francis Bonahon, Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. (4) 30 (1997), 205-240 Zbl0887.57018MR1432054
- Francesco Bonsante, Deforming the Minkowskian cone of a closed hyperbolic manifold, (2005) Zbl1094.53063
- Francesco Bonsante, Flat spacetimes with compact hyperbolic Cauchy surfaces, J. Differential Geom. 69 (2005), 441-521 Zbl1094.53063MR2170277
- Peter Buser, Geometry and spectra of compact Riemann surfaces, 106 (1992), Birkhäuser Boston Inc., Boston, MA Zbl1239.32001MR1183224
- Steven Carlip, Quantum gravity in dimensions, (1998), Cambridge University Press, Cambridge Zbl0919.53024MR1637718
- Shiu Yuen Cheng, Shing Tung Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2) 104 (1976), 407-419 Zbl0352.53021MR431061
- Shiu Yuen Cheng, Shing Tung Yau, On the regularity of the solution of the -dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), 495-516 Zbl0363.53030MR423267
- H. S. M. Coxeter, A geometrical background for de Sitter’s world, Amer. Math. Monthly 50 (1943), 217-228 Zbl0060.44309MR7991
- Gaston Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, (1887-1896), Gauthier-Villars Zbl0257.53001
- F. Delanöe, The Dirichlet problem for an equation of given Lorentz-Gaussian curvature, Ukrain. Mat. Zh. 42 (1990), 1704-1710 Zbl0724.35039MR1098472
- Klaus Ecker, Gerhard Huisken, Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes, Comm. Math. Phys. 135 (1991), 595-613 Zbl0721.53055MR1091580
- J.-H. Eschenburg, G. J. Galloway, Lines in space-times, Comm. Math. Phys. 148 (1992), 209-216 Zbl0756.53028MR1178143
- Claus Gerhardt, Minkowki type problems for convex hypersurfaces in hyperbolic space Zbl0932.35090
- Claus Gerhardt, Hypersurfaces of prescribed curvature in Lorentzian manifolds, Indiana Univ. Math. J. 49 (2000), 1125-1153 Zbl1034.53064MR1803223
- Claus Gerhardt, Hypersurfaces of prescribed scalar curvature in Lorentzian manifolds, J. Reine Angew. Math. 554 (2003), 157-199 Zbl1091.53039MR1952172
- Claus Gerhardt, Minkowski type problems for convex hypersurfaces in the sphere, Pure Appl. Math. Q. 3 (2007), 417-449 Zbl1152.53043MR2340049
- Robert Geroch, Domain of dependence, J. Mathematical Phys. 11 (1970), 437-449 Zbl0189.27602MR270697
- Bo Guan, The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature, Trans. Amer. Math. Soc. 350 (1998), 4955-4971 Zbl0919.35046MR1451602
- Bo Guan, Pengfei Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math. (2) 156 (2002), 655-673 Zbl1025.53028MR1933079
- Bo Guan, Huai-Yu Jian, Richard M. Schoen, Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space, J. Reine Angew. Math. 595 (2006), 167-188 Zbl1097.53040MR2244801
- Jun-ichi Hano, Katsumi Nomizu, On isometric immersions of the hyperbolic plane into the Lorentz-Minkowski space and the Monge-Ampère equation of a certain type, Math. Ann. 262 (1983), 245-253 Zbl0507.53042MR690199
- I. Iskhakov, On hyperbolic surface tessellations and equivariant spacelike polyhedral surfaces in Minkowski space, (2000)
- Kirill Krasnov, Jean-Marc Schlenker, Minimal surfaces and particles in 3-manifolds, Geom. Dedicata 126 (2007), 187-254 Zbl1126.53037MR2328927
- François Labourie, Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques, Bull. Soc. Math. France 119 (1991), 307-325 Zbl0758.53030MR1125669
- François Labourie, Problèmes de Monge-Ampère, courbes holomorphes et laminations, Geom. Funct. Anal. 7 (1997), 496-534 Zbl0885.32013MR1466336
- Gilbert Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), 119-135 Zbl0522.57027MR683752
- An Min Li, Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space, Arch. Math. (Basel) 64 (1995), 534-551 Zbl0828.53050MR1329827
- An Min Li, Udo Simon, Guo Song Zhao, Global affine differential geometry of hypersurfaces, 11 (1993), Walter de Gruyter & Co., Berlin Zbl0808.53002MR1257186
- R. Mazzeo, F. Pacard, Constant curvature foliations in asymptotically hyperbolic spaces Zbl1214.53024
- William H. Meeks, The topology and geometry of embedded surfaces of constant mean curvature, J. Differential Geom. 27 (1988), 539-552 Zbl0617.53007MR940118
- Geoffrey Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007), 3-45 Zbl1206.83117MR2328921
- Vincent Moncrief, Reduction of the Einstein equations in dimensions to a Hamiltonian system over Teichmüller space, J. Math. Phys. 30 (1989), 2907-2914 Zbl0704.53076MR1025234
- Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337-394 Zbl0051.12402MR58265
- Barrett O’Neill, Semi-Riemannian geometry, 103 (1983), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York Zbl0531.53051MR719023
- Kevin P. Scannell, Flat conformal structures and the classification of de Sitter manifolds, Comm. Anal. Geom. 7 (1999), 325-345 Zbl0941.53040MR1685590
- Jean-Marc Schlenker, Surfaces convexes dans des espaces lorentziens à courbure constante, Comm. Anal. Geom. 4 (1996), 285-331 Zbl0864.53016MR1393565
- Oliver C. Schnürer, The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, Math. Z. 242 (2002), 159-181 Zbl1042.53026MR1985454
- Oliver C. Schnürer, A generalized Minkowski problem with Dirichlet boundary condition, Trans. Amer. Math. Soc. 355 (2003), 655-663 (electronic) Zbl1081.35045MR1932719
- G. Smith, Moduli of flat conformal structures of hyperbolic type Zbl1231.53012
- Andrejs E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, V, Invent. Math. 66 (1982), 39-56 Zbl0483.53055MR652645
- John Urbas, The Dirichlet problem for the equation of prescribed scalar curvature in Minkowski space, Calc. Var. Partial Differential Equations 18 (2003), 307-316 Zbl1080.53062MR2018670
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.