Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations

Curtis T. McMullen

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 4, page 519-560
  • ISSN: 0012-9593

How to cite

top

McMullen, Curtis T.. "Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations." Annales scientifiques de l'École Normale Supérieure 33.4 (2000): 519-560. <http://eudml.org/doc/82526>.

@article{McMullen2000,
author = {McMullen, Curtis T.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {3-manifolds fibering over the circle; surface laminations; Teichmüller theory; uniformization},
language = {eng},
number = {4},
pages = {519-560},
publisher = {Elsevier},
title = {Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations},
url = {http://eudml.org/doc/82526},
volume = {33},
year = {2000},
}

TY - JOUR
AU - McMullen, Curtis T.
TI - Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 4
SP - 519
EP - 560
LA - eng
KW - 3-manifolds fibering over the circle; surface laminations; Teichmüller theory; uniformization
UR - http://eudml.org/doc/82526
ER -

References

top
  1. [1] ARNOUX P., YOCCOZ J.-C., Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris 292 (1981) 75-78. Zbl0478.58023MR82b:57018
  2. [2] ATIYAH M., MACDONALD I., Commutative Algebra, Addison-Wesley, 1969. MR39 #4129
  3. [3] BAUER M., An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361-370. Zbl0754.57007MR92g:57024
  4. [4] BERS L., An extremal problem for quasiconformal maps and a theorem by Thurston, Acta Math. 141 (1978) 73-98. Zbl0389.30018MR57 #16704
  5. [5] BESTVINA M., HANDEL M., Train-tracks for surface homeomorphisms, Topology 34 (1995) 109-140. Zbl0837.57010MR96d:57014
  6. [6] BIRMAN J.S., Braids, Links and Mapping-Class Groups, Annals of Math. Studies, Vol. 82, Princeton University Press, 1974. Zbl0305.57013MR51 #11477
  7. [7] BONAHON F., Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. 30 (1997) 205-240. Zbl0887.57018MR98b:57027
  8. [8] BONAHON F., Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103-122. Zbl0871.57027MR97j:57015
  9. [9] BRINKMAN P., An implementation of the Bestvina-Handel algorithm for surface homeomorphisms, J. Exp. Math., to appear. Zbl0982.57005
  10. [10] BURDE G., ZIESCHANG H., Knots, Walter de Gruyter & Co., 1985. Zbl0568.57001MR87b:57004
  11. [11] CANTWELL J., CONLON L., Isotopies of foliated 3-manifolds without holonomy, Adv. Math. 144 (1999) 13-49. Zbl0934.57033MR2000c:57060
  12. [12] CONNES A., Noncommutative Geometry, Academic Press, 1994. Zbl0818.46076MR95j:46063
  13. [13] COOPER D., LONG D.D., REID A.W., Finite foliations and similarity interval exchange maps, Topology 36 (1997) 209-227. Zbl0873.57023MR97j:57032
  14. [14] DUNFIELD N., Alexander and Thurston norms of fibered 3-manifolds, Preprint, 1999. 
  15. [15] FATHI A., Démonstration d'un théorème de Penner sur la composition des twists de Dehn, Bull. Sci. Math. France 120 (1992) 467-484. Zbl0779.57005MR93j:57005
  16. [16] FATHI A., LAUDENBACH F., POÉNARU V., Travaux de Thurston sur les Surfaces, Astérisque, Vol. 66-67, 1979. MR82m:57003
  17. [17] FRIED D., Fibrations over S1 with pseudo-Anosov monodromy, in : Travaux de Thurston sur les Surfaces, Astérisque, Vol. 66-67, 1979, pp. 251-265. Zbl0446.57023
  18. [18] FRIED D., Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helvetici 57 (1982) 237-259. Zbl0503.58026MR84g:58083
  19. [19] FRIED D., The geometry of cross sections to flows, Topology 21 (1982) 353-371. Zbl0594.58041MR84d:58068
  20. [20] FRIED D., Growth rate of surface homeomorphisms and flow equivalence, Ergod. Theory Dynamical Syst. 5 (1985) 539-564. Zbl0603.58020MR88f:58118
  21. [21] GABAI D., Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503. Zbl0533.57013MR86a:57009
  22. [22] GABAI D., Foliations and genera of links, Topology 23 (1984) 381-394. Zbl0567.57021MR86h:57006
  23. [23] GANTMACHER F.R., The Theory of Matrices, Vol. II, Chelsea, New York, 1959. Zbl0085.01001
  24. [24] HARER J.L., PENNER R.C., Combinatorics of Train Tracks, Annals of Math. Studies, Vol. 125, Princeton University Press, 1992. Zbl0765.57001MR94b:57018
  25. [25] HATCHER A., OERTEL U., Affine lamination spaces for surfaces, Pacific J. Math. 154 (1992) 87-101. Zbl0772.57032MR93b:57033
  26. [26] HUBBARD J., MASUR H., Quadratic differentials and foliations, Acta Math. 142 (1979) 221-274. Zbl0415.30038MR80h:30047
  27. [27] KRONHEIMER P., MROWKA T., Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931-937. Zbl0892.57011MR98m:57039
  28. [28] LANG S., Algebra, Addison-Wesley, 1984. Zbl0712.00001
  29. [29] LAUDENBACH F., BLANK S., Isotopie de formes fermées en dimension trois, Invent. Math. 54 (1979) 103-177. Zbl0435.58002MR81d:58003
  30. [30] LIND D., MARCUS B., An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995. Zbl1106.37301MR97a:58050
  31. [31] LONG D., OERTEL U., Hyperbolic surface bundles over the circle, in : Progress in Knot Theory and Related Topics, Travaux en Cours, Vol. 56, Hermann, 1997, pp. 121-142. Zbl0959.57019MR98m:57022
  32. [32] MATSUMOTO S., Topological entropy and Thurston's norm of atoroidal surface bundles over the circle, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 763-778. Zbl0647.57006MR89c:57011
  33. [33] MCMULLEN C., The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Preprint, 1998. 
  34. [34] MOSHER L., Surfaces and branched surfaces transverse to pseudo-Anosov flows on 3-manifolds, J. Differential Geom. 34 (1991) 1-36. Zbl0754.58031MR92k:57029
  35. [35] NGÔ V.Q., ROUSSARIE R., Sur l'isotopie des formes fermées en dimension 3, Invent. Math. 64 (1981) 69-87. Zbl0467.58004MR83b:58006
  36. [36] NORTHCOTT D.G., Finite Free Resolutions, Cambridge University Press, 1976. Zbl0328.13010MR57 #377
  37. [37] OERTEL U., Homology branched surfaces : Thurston's norm on H2(M³), in : Epstein D.B. (Ed.), Low-Dimensional Topology and Kleinian Groups, Cambridge Univ. Press, 1986, pp. 253-272. Zbl0628.57011MR89e:57011
  38. [38] OERTEL U., Affine laminations and their stretch factors, Pacific J. Math. 182 (1998) 303-328. Zbl0909.57008MR99i:57037
  39. [39] PENNER R., A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179-198. Zbl0706.57008MR89k:57026
  40. [40] PENNER R., Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443-450. Zbl0726.57013MR91m:57010
  41. [41] ROLFSEN D., Knots and Links, Publish or Perish, Inc., 1976. Zbl0339.55004MR58 #24236
  42. [42] THURSTON W.P., Geometry and Topology of Three-Manifolds, Lecture Notes, Princeton University, 1979. 
  43. [43] THURSTON W.P., A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 339 (1986) 99-130. Zbl0585.57006MR88h:57014
  44. [44] THURSTON W.P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417-432. Zbl0674.57008MR89k:57023
  45. [45] THURSTON W.P., Three-manifolds, foliations and circles, I, Preprint, 1997. 
  46. [46] YOCCOZ J.-C., Petits Diviseurs en Dimension 1, Astérisque, Vol. 231, 1995. Zbl0836.30001MR96f:58005
  47. [47] ZHIROV A. YU., On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995) 197-198. Zbl0847.58057MR96e:58123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.