Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 4, page 519-560
- ISSN: 0012-9593
Access Full Article
topHow to cite
topMcMullen, Curtis T.. "Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations." Annales scientifiques de l'École Normale Supérieure 33.4 (2000): 519-560. <http://eudml.org/doc/82526>.
@article{McMullen2000,
author = {McMullen, Curtis T.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {3-manifolds fibering over the circle; surface laminations; Teichmüller theory; uniformization},
language = {eng},
number = {4},
pages = {519-560},
publisher = {Elsevier},
title = {Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations},
url = {http://eudml.org/doc/82526},
volume = {33},
year = {2000},
}
TY - JOUR
AU - McMullen, Curtis T.
TI - Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 4
SP - 519
EP - 560
LA - eng
KW - 3-manifolds fibering over the circle; surface laminations; Teichmüller theory; uniformization
UR - http://eudml.org/doc/82526
ER -
References
top- [1] ARNOUX P., YOCCOZ J.-C., Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris 292 (1981) 75-78. Zbl0478.58023MR82b:57018
- [2] ATIYAH M., MACDONALD I., Commutative Algebra, Addison-Wesley, 1969. MR39 #4129
- [3] BAUER M., An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361-370. Zbl0754.57007MR92g:57024
- [4] BERS L., An extremal problem for quasiconformal maps and a theorem by Thurston, Acta Math. 141 (1978) 73-98. Zbl0389.30018MR57 #16704
- [5] BESTVINA M., HANDEL M., Train-tracks for surface homeomorphisms, Topology 34 (1995) 109-140. Zbl0837.57010MR96d:57014
- [6] BIRMAN J.S., Braids, Links and Mapping-Class Groups, Annals of Math. Studies, Vol. 82, Princeton University Press, 1974. Zbl0305.57013MR51 #11477
- [7] BONAHON F., Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. 30 (1997) 205-240. Zbl0887.57018MR98b:57027
- [8] BONAHON F., Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103-122. Zbl0871.57027MR97j:57015
- [9] BRINKMAN P., An implementation of the Bestvina-Handel algorithm for surface homeomorphisms, J. Exp. Math., to appear. Zbl0982.57005
- [10] BURDE G., ZIESCHANG H., Knots, Walter de Gruyter & Co., 1985. Zbl0568.57001MR87b:57004
- [11] CANTWELL J., CONLON L., Isotopies of foliated 3-manifolds without holonomy, Adv. Math. 144 (1999) 13-49. Zbl0934.57033MR2000c:57060
- [12] CONNES A., Noncommutative Geometry, Academic Press, 1994. Zbl0818.46076MR95j:46063
- [13] COOPER D., LONG D.D., REID A.W., Finite foliations and similarity interval exchange maps, Topology 36 (1997) 209-227. Zbl0873.57023MR97j:57032
- [14] DUNFIELD N., Alexander and Thurston norms of fibered 3-manifolds, Preprint, 1999.
- [15] FATHI A., Démonstration d'un théorème de Penner sur la composition des twists de Dehn, Bull. Sci. Math. France 120 (1992) 467-484. Zbl0779.57005MR93j:57005
- [16] FATHI A., LAUDENBACH F., POÉNARU V., Travaux de Thurston sur les Surfaces, Astérisque, Vol. 66-67, 1979. MR82m:57003
- [17] FRIED D., Fibrations over S1 with pseudo-Anosov monodromy, in : Travaux de Thurston sur les Surfaces, Astérisque, Vol. 66-67, 1979, pp. 251-265. Zbl0446.57023
- [18] FRIED D., Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helvetici 57 (1982) 237-259. Zbl0503.58026MR84g:58083
- [19] FRIED D., The geometry of cross sections to flows, Topology 21 (1982) 353-371. Zbl0594.58041MR84d:58068
- [20] FRIED D., Growth rate of surface homeomorphisms and flow equivalence, Ergod. Theory Dynamical Syst. 5 (1985) 539-564. Zbl0603.58020MR88f:58118
- [21] GABAI D., Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503. Zbl0533.57013MR86a:57009
- [22] GABAI D., Foliations and genera of links, Topology 23 (1984) 381-394. Zbl0567.57021MR86h:57006
- [23] GANTMACHER F.R., The Theory of Matrices, Vol. II, Chelsea, New York, 1959. Zbl0085.01001
- [24] HARER J.L., PENNER R.C., Combinatorics of Train Tracks, Annals of Math. Studies, Vol. 125, Princeton University Press, 1992. Zbl0765.57001MR94b:57018
- [25] HATCHER A., OERTEL U., Affine lamination spaces for surfaces, Pacific J. Math. 154 (1992) 87-101. Zbl0772.57032MR93b:57033
- [26] HUBBARD J., MASUR H., Quadratic differentials and foliations, Acta Math. 142 (1979) 221-274. Zbl0415.30038MR80h:30047
- [27] KRONHEIMER P., MROWKA T., Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931-937. Zbl0892.57011MR98m:57039
- [28] LANG S., Algebra, Addison-Wesley, 1984. Zbl0712.00001
- [29] LAUDENBACH F., BLANK S., Isotopie de formes fermées en dimension trois, Invent. Math. 54 (1979) 103-177. Zbl0435.58002MR81d:58003
- [30] LIND D., MARCUS B., An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995. Zbl1106.37301MR97a:58050
- [31] LONG D., OERTEL U., Hyperbolic surface bundles over the circle, in : Progress in Knot Theory and Related Topics, Travaux en Cours, Vol. 56, Hermann, 1997, pp. 121-142. Zbl0959.57019MR98m:57022
- [32] MATSUMOTO S., Topological entropy and Thurston's norm of atoroidal surface bundles over the circle, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 763-778. Zbl0647.57006MR89c:57011
- [33] MCMULLEN C., The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Preprint, 1998.
- [34] MOSHER L., Surfaces and branched surfaces transverse to pseudo-Anosov flows on 3-manifolds, J. Differential Geom. 34 (1991) 1-36. Zbl0754.58031MR92k:57029
- [35] NGÔ V.Q., ROUSSARIE R., Sur l'isotopie des formes fermées en dimension 3, Invent. Math. 64 (1981) 69-87. Zbl0467.58004MR83b:58006
- [36] NORTHCOTT D.G., Finite Free Resolutions, Cambridge University Press, 1976. Zbl0328.13010MR57 #377
- [37] OERTEL U., Homology branched surfaces : Thurston's norm on H2(M³), in : Epstein D.B. (Ed.), Low-Dimensional Topology and Kleinian Groups, Cambridge Univ. Press, 1986, pp. 253-272. Zbl0628.57011MR89e:57011
- [38] OERTEL U., Affine laminations and their stretch factors, Pacific J. Math. 182 (1998) 303-328. Zbl0909.57008MR99i:57037
- [39] PENNER R., A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179-198. Zbl0706.57008MR89k:57026
- [40] PENNER R., Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443-450. Zbl0726.57013MR91m:57010
- [41] ROLFSEN D., Knots and Links, Publish or Perish, Inc., 1976. Zbl0339.55004MR58 #24236
- [42] THURSTON W.P., Geometry and Topology of Three-Manifolds, Lecture Notes, Princeton University, 1979.
- [43] THURSTON W.P., A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 339 (1986) 99-130. Zbl0585.57006MR88h:57014
- [44] THURSTON W.P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417-432. Zbl0674.57008MR89k:57023
- [45] THURSTON W.P., Three-manifolds, foliations and circles, I, Preprint, 1997.
- [46] YOCCOZ J.-C., Petits Diviseurs en Dimension 1, Astérisque, Vol. 231, 1995. Zbl0836.30001MR96f:58005
- [47] ZHIROV A. YU., On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995) 197-198. Zbl0847.58057MR96e:58123
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.