Quantum groups in higher genus and Drinfeld’s new realizations method ( 𝔰 𝔩 2 case)

B. Enriquez; V. N. Rubtsov

Annales scientifiques de l'École Normale Supérieure (1997)

  • Volume: 30, Issue: 6, page 821-846
  • ISSN: 0012-9593

How to cite

top

Enriquez, B., and Rubtsov, V. N.. "Quantum groups in higher genus and Drinfeld’s new realizations method (${\mathfrak {s}\mathfrak {l}}_2$ case)." Annales scientifiques de l'École Normale Supérieure 30.6 (1997): 821-846. <http://eudml.org/doc/82451>.

@article{Enriquez1997,
author = {Enriquez, B., Rubtsov, V. N.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quantum groups; infinite twists; Manin pairs; meromorphic differentials},
language = {eng},
number = {6},
pages = {821-846},
publisher = {Elsevier},
title = {Quantum groups in higher genus and Drinfeld’s new realizations method ($\{\mathfrak \{s\}\mathfrak \{l\}\}_2$ case)},
url = {http://eudml.org/doc/82451},
volume = {30},
year = {1997},
}

TY - JOUR
AU - Enriquez, B.
AU - Rubtsov, V. N.
TI - Quantum groups in higher genus and Drinfeld’s new realizations method (${\mathfrak {s}\mathfrak {l}}_2$ case)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 6
SP - 821
EP - 846
LA - eng
KW - quantum groups; infinite twists; Manin pairs; meromorphic differentials
UR - http://eudml.org/doc/82451
ER -

References

top
  1. [1] J. BECK, Braid group action and quantum affine algebras (Commun. Math. Phys., Vol. 165, 1994, pp. 555-68). Zbl0807.17013MR95i:17011
  2. [2] V. CHARI and A. PRESSLEY, Quantum affine algebras (Commun. Math. Phys., Vol. 142, 1991, pp. 261-83). Zbl0739.17004MR93d:17017
  3. [3] J. DING and I. B. FRENKEL, Isomorphism of two realizations of quantum affine algebras Uq(ĝln) (Commun. Math. Phys., Vol. 156, 1993, pp. 277-300). Zbl0786.17008MR94i:17020
  4. [4] V. G. DRINFELD, A new realization of Yangians and quantized affine algebras (Sov. Math. Dokl., Vol. 36, 1988). Zbl0667.16004MR88j:17020
  5. [5] V. G. DRINFELD, Quasi-Hopf algebras (Leningrand Math. J., Vol. 1:6, 1990, pp. 1419-57). Zbl0718.16033MR91b:17016
  6. [6] B. ENRIQUEZ and G. FELDER, in preparation. 
  7. [7] P. ETINGOF and D. KAZHDAN, Quantization of Lie bialgebras, I (Selecta Math. 2 (1996), No. 1, pp. 1-41), q-alg/9506005. Zbl0863.17008MR97f:17014
  8. [8] B. L. FEIGIN and E. V. FRENKEL, Quantum W-algebras and elliptic algebras (Commun. Math. Phys., Vol. 178, 1996, pp. 653-678), q-alg/9508009. Zbl0871.17007MR98a:81062
  9. [9] I. B. FRENKEL and N. JING, Vertex representations of quantum affine algebras (Proc. Natl. Acad. Sci. USA, Vol. 85, 1988, pp. 9373-7). Zbl0662.17006MR90e:17028
  10. [10] S. M. KHOROSHKIN and V. N. TOLSTOY, On Drinfeld's realization of quantum affine algebras (J. Geom. Phys., Vol. 11, 1993, pp. 445-52). Zbl0784.17022MR94j:16068
  11. [11] N. Yu. RESHETIKHIN and M. A. SEMENOV-TIAN-SHANSKY, Central extensions of quantum current groups (Lett. Math. Phys., Vol. 19, 1990, pp. 133-42). Zbl0692.22011MR91k:17013
  12. [12] A. G. REYMAN and M. A. SEMENOV-TIAN-SHANSKY, Integrable systems II, ch. 11, (Encycl. Sov. Math., Vol. 16, “Dynamical systems, 7”, Springer-Verlag, 1993, pp. 188-225). 
  13. [13] M. A. SEMENOV-TIAN-SHANSKY, Poisson-Lie groups, quantum duality principle, and the quantum double (Theor. Math. Phys., Vol. 93, 1992, pp. 1292-307). Zbl0834.22019MR94e:58007
  14. [14] J.-P. SERRE, Groupes algébriques et corps de classes, Hermann, Paris, 1959. Zbl0097.35604MR21 #1973
  15. [15] E. K. SKLYANIN, Some algebraic structures connected with the Yang-Baxter equation (Funct. An. Appl., Vol. 16, 1982, pp. 263-70). Zbl0513.58028MR84c:82004
  16. [16] D. B. UGLOV, The quantum bialgebra associated with the eight-vertex R-matrix (Lett. Math. Phys., Vol. 28, 1993, pp. 139-42). Zbl0774.17024MR94e:82040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.