Quantum groups in higher genus and Drinfeld’s new realizations method ( case)
Annales scientifiques de l'École Normale Supérieure (1997)
- Volume: 30, Issue: 6, page 821-846
- ISSN: 0012-9593
Access Full Article
topHow to cite
topEnriquez, B., and Rubtsov, V. N.. "Quantum groups in higher genus and Drinfeld’s new realizations method (${\mathfrak {s}\mathfrak {l}}_2$ case)." Annales scientifiques de l'École Normale Supérieure 30.6 (1997): 821-846. <http://eudml.org/doc/82451>.
@article{Enriquez1997,
author = {Enriquez, B., Rubtsov, V. N.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quantum groups; infinite twists; Manin pairs; meromorphic differentials},
language = {eng},
number = {6},
pages = {821-846},
publisher = {Elsevier},
title = {Quantum groups in higher genus and Drinfeld’s new realizations method ($\{\mathfrak \{s\}\mathfrak \{l\}\}_2$ case)},
url = {http://eudml.org/doc/82451},
volume = {30},
year = {1997},
}
TY - JOUR
AU - Enriquez, B.
AU - Rubtsov, V. N.
TI - Quantum groups in higher genus and Drinfeld’s new realizations method (${\mathfrak {s}\mathfrak {l}}_2$ case)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 6
SP - 821
EP - 846
LA - eng
KW - quantum groups; infinite twists; Manin pairs; meromorphic differentials
UR - http://eudml.org/doc/82451
ER -
References
top- [1] J. BECK, Braid group action and quantum affine algebras (Commun. Math. Phys., Vol. 165, 1994, pp. 555-68). Zbl0807.17013MR95i:17011
- [2] V. CHARI and A. PRESSLEY, Quantum affine algebras (Commun. Math. Phys., Vol. 142, 1991, pp. 261-83). Zbl0739.17004MR93d:17017
- [3] J. DING and I. B. FRENKEL, Isomorphism of two realizations of quantum affine algebras Uq(ĝln) (Commun. Math. Phys., Vol. 156, 1993, pp. 277-300). Zbl0786.17008MR94i:17020
- [4] V. G. DRINFELD, A new realization of Yangians and quantized affine algebras (Sov. Math. Dokl., Vol. 36, 1988). Zbl0667.16004MR88j:17020
- [5] V. G. DRINFELD, Quasi-Hopf algebras (Leningrand Math. J., Vol. 1:6, 1990, pp. 1419-57). Zbl0718.16033MR91b:17016
- [6] B. ENRIQUEZ and G. FELDER, in preparation.
- [7] P. ETINGOF and D. KAZHDAN, Quantization of Lie bialgebras, I (Selecta Math. 2 (1996), No. 1, pp. 1-41), q-alg/9506005. Zbl0863.17008MR97f:17014
- [8] B. L. FEIGIN and E. V. FRENKEL, Quantum W-algebras and elliptic algebras (Commun. Math. Phys., Vol. 178, 1996, pp. 653-678), q-alg/9508009. Zbl0871.17007MR98a:81062
- [9] I. B. FRENKEL and N. JING, Vertex representations of quantum affine algebras (Proc. Natl. Acad. Sci. USA, Vol. 85, 1988, pp. 9373-7). Zbl0662.17006MR90e:17028
- [10] S. M. KHOROSHKIN and V. N. TOLSTOY, On Drinfeld's realization of quantum affine algebras (J. Geom. Phys., Vol. 11, 1993, pp. 445-52). Zbl0784.17022MR94j:16068
- [11] N. Yu. RESHETIKHIN and M. A. SEMENOV-TIAN-SHANSKY, Central extensions of quantum current groups (Lett. Math. Phys., Vol. 19, 1990, pp. 133-42). Zbl0692.22011MR91k:17013
- [12] A. G. REYMAN and M. A. SEMENOV-TIAN-SHANSKY, Integrable systems II, ch. 11, (Encycl. Sov. Math., Vol. 16, “Dynamical systems, 7”, Springer-Verlag, 1993, pp. 188-225).
- [13] M. A. SEMENOV-TIAN-SHANSKY, Poisson-Lie groups, quantum duality principle, and the quantum double (Theor. Math. Phys., Vol. 93, 1992, pp. 1292-307). Zbl0834.22019MR94e:58007
- [14] J.-P. SERRE, Groupes algébriques et corps de classes, Hermann, Paris, 1959. Zbl0097.35604MR21 #1973
- [15] E. K. SKLYANIN, Some algebraic structures connected with the Yang-Baxter equation (Funct. An. Appl., Vol. 16, 1982, pp. 263-70). Zbl0513.58028MR84c:82004
- [16] D. B. UGLOV, The quantum bialgebra associated with the eight-vertex R-matrix (Lett. Math. Phys., Vol. 28, 1993, pp. 139-42). Zbl0774.17024MR94e:82040
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.