Displaying similar documents to “Quantum groups in higher genus and Drinfeld’s new realizations method ( 𝔰 𝔩 2 case)”

Introduction to quantum Lie algebras

Gustav Delius (1997)

Banach Center Publications

Similarity:

Quantum Lie algebras are generalizations of Lie algebras whose structure constants are power series in h. They are derived from the quantized enveloping algebras U h ( g ) . The quantum Lie bracket satisfies a generalization of antisymmetry. Representations of quantum Lie algebras are defined in terms of a generalized commutator. The recent general results about quantum Lie algebras are introduced with the help of the explicit example of ( s l 2 ) h .