New evidence for Green's conjecture on syzygies of canonical curves

A. Hirschowitz; S. Ramanan

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 2, page 145-152
  • ISSN: 0012-9593

How to cite

top

Hirschowitz, A., and Ramanan, S.. "New evidence for Green's conjecture on syzygies of canonical curves." Annales scientifiques de l'École Normale Supérieure 31.2 (1998): 145-152. <http://eudml.org/doc/82458>.

@article{Hirschowitz1998,
author = {Hirschowitz, A., Ramanan, S.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Green's conjecture; numbers of syzygies of the generic canonical curve; genus},
language = {eng},
number = {2},
pages = {145-152},
publisher = {Elsevier},
title = {New evidence for Green's conjecture on syzygies of canonical curves},
url = {http://eudml.org/doc/82458},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Hirschowitz, A.
AU - Ramanan, S.
TI - New evidence for Green's conjecture on syzygies of canonical curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 2
SP - 145
EP - 152
LA - eng
KW - Green's conjecture; numbers of syzygies of the generic canonical curve; genus
UR - http://eudml.org/doc/82458
ER -

References

top
  1. [A] S. Ju. ARAKELOV, Families of algebraic curves with fixed degeneracy, (Math. USSR Izvestjia, Vol. 5, 1971, n. 6). Zbl0248.14004
  2. [ELMS] D. EISENBUD, H. LANGE, G. MARTENS and F.-O. SCHREYER, The Clifford dimension of a projective curve, (Compositio Math. 72, 1989, pp. 173-204). Zbl0703.14020MR91b:14033
  3. [G] M. GREEN, Koszul cohomology and the geometry of projective varieties, (Journal of Diff. Geometry, 19, 1984, pp. 125-171). Zbl0559.14008MR85e:14022
  4. [GL] M. GREEN and R. LAZARSFELD, Appendix to [G]. 
  5. [HM] J. HARRIS and D. MUMFORD, On the Kodaira dimension of the moduli space of curves, (Invent. Math., 67, 1982, pp. 23-86). Zbl0506.14016MR83i:14018
  6. [M] D. MUMFORD, Towards an enumerative geometry of the moduli space of curves, Arithmetic and Geometry II (M. Artin and J. Tate, eds.) Birkhaüser Verlag, Boston-Basel-Berlin, 1983, pp. 271-328. Zbl0554.14008MR85j:14046
  7. [PR] K. PARANJAPE and S. RAMANAN, On the canonical ring of a curve, (Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Vol. II, 1988, pp. 503-516). Zbl0699.14041MR90b:14024
  8. [Sch] F. O. SCHREYER, Syzygies of canonical curves and special linear series, (Math. Ann., 275, 1986, pp. 105-137). Zbl0578.14002MR87j:14052
  9. [V] C. VOISIN, Courbes tétragonales et cohomologie de Koszul, (J. für die r. und ang. Math., 387, 1988, pp. 11-121). Zbl0652.14012MR89e:14036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.