La formule de Verlinde

Christoph Sorger

Séminaire Bourbaki (1994-1995)

  • Volume: 37, page 87-114
  • ISSN: 0303-1179

How to cite

top

Sorger, Christoph. "La formule de Verlinde." Séminaire Bourbaki 37 (1994-1995): 87-114. <http://eudml.org/doc/110210>.

@article{Sorger1994-1995,
author = {Sorger, Christoph},
journal = {Séminaire Bourbaki},
keywords = {fusion rules; rational conformal quantum field theory; conformal blocks; compact Riemann surface; Verlinde formula; dimension formula; generalized theta functions; moduli spaces of semi-stable vector bundles; representations of affine Lie algebras},
language = {fre},
pages = {87-114},
publisher = {Société Mathématique de France},
title = {La formule de Verlinde},
url = {http://eudml.org/doc/110210},
volume = {37},
year = {1994-1995},
}

TY - JOUR
AU - Sorger, Christoph
TI - La formule de Verlinde
JO - Séminaire Bourbaki
PY - 1994-1995
PB - Société Mathématique de France
VL - 37
SP - 87
EP - 114
LA - fre
KW - fusion rules; rational conformal quantum field theory; conformal blocks; compact Riemann surface; Verlinde formula; dimension formula; generalized theta functions; moduli spaces of semi-stable vector bundles; representations of affine Lie algebras
UR - http://eudml.org/doc/110210
ER -

References

top
  1. [1] A. Beauville. Conformal Blocks, Fusion rules and the Verlinde formula, Prépublication alg-geom/9405001 (1994) 
  2. [2] A. Beauville ET Y. Laszlo. Conformal blocks and generalized theta functions, Comm. Math. Physics164 (1994) 385-419 Zbl0815.14015MR1289330
  3. [3] A. Beauville, M.S. Narasimhan ET S. Ramanan. Spectral curves and the generalised theta divisor, J. reine angew. Math.398 (1989) 169-179 Zbl0666.14015MR998478
  4. [4] A. Beilinson ET V. Schechtmann. Determinant bundles and Virasoro algebras, Comm. Math. Phys.118 (1988) 651-701 Zbl0665.17010MR962493
  5. [5] A. Bertram. Generalized SU(2)-theta functions, Inv. Math.113 (1993) 351-372 Zbl0816.14013MR1228129
  6. [6] A. Bertram ET A. Szenes. Hilbert polynomials of moduli spaces of rank 2 vector bundles II, Topology32 (1993) 599-609 Zbl0798.14004MR1231966
  7. [7] G. Daskalopoulos ET R. Wentworth. Local degeneration of the moduli space of vector bundles and factorisation of rank 2 theta functions, Math. Annalen297 (1992) 417-466 Zbl0788.32012MR1245399
  8. [8] G. Daskalopoulos ET R. Wentworth. Factorisation of rank 2 theta functions II: the Verlinde formula, Prépublication (1994) 
  9. [9] R. Donagi ET L. Tu. Theta functions for SL(n) versus GL(n), Prépublication (1992) Zbl0847.14027
  10. [10] S. Donaldson. Gluing techniques in the cohomology of moduli spaces, à paraître au volume en mémoire de Andreas Floer (edité par H. Hofer, C. Taubes, E. Zehnder) (1994) Zbl0870.57039MR1215963
  11. [11] J.M. Drezet ET M.S. Narasimhan. Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques., Invent. math.97 (1989) 53-94 Zbl0689.14012MR999313
  12. [12] G. Faltings. G-bundles and projective connections, J. Alg. Geometry2 (1993) 507-568 Zbl0790.14019MR1211997
  13. [13] G. Faltings. A proof of the Verlinda formula, J. Alg. Geometry3 (1994) 347- 374 Zbl0809.14009MR1257326
  14. [14] N. Hitchin. Flat connections and geometric quantization, Comm. Math. Phys.131 (1990) 347-380 Zbl0718.53021MR1065677
  15. [15] V. Kac. Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge (1985) Zbl0574.17010MR823672
  16. [16] V. Knizhnik ET A. Zamolodchikov. Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B247 (1984) Zbl0661.17020MR853258
  17. [17] S. Kumar. Demazure character formula in arbitrary Kac-Moody setting, Inv. math.89 (1987) 395-423 Zbl0635.14023MR894387
  18. [18] S. Kumar, M.S. Narasimhan ET A. Ramanathan. Infinite Grassmanians and Moduli Spaces of G-bundles, Math. Annalen300 (1993) 395-423 Zbl0803.14012MR1289830
  19. [19] O. Mathieu. Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque159-160 (1988) MR980506
  20. [20] M.S. Narasimhan ET T.R. Ramadas. Factorisation of generalized Theta functions I, Inv. Math.114 (1993) 565-623 Zbl0815.14014MR1244913
  21. [21] W.M. Oxbury ET S.M.J. Wilson. Reciprocity laws in the Verlinde formulae for classical groups, Prépublication, Durham University (1994) Zbl0902.14031
  22. [22] T. Panteev. Comparison of generalized theta functions, Prépublication (1993) 
  23. [23] C. Pauly. Espaces de modules de fibrés paraboliques et blocs conformes, Prépublication (1994) 
  24. [24] T.R. Ramadas. Factorisation of generalized theta functions II, Prépublication, TIFR Bombay (1994) Zbl0852.14007
  25. [25] G. Segal ET G. Wilson. Loop groups and equations of KdV type, Pub. math. IHES61 (1985) 5-65 Zbl0592.35112MR783348
  26. [26] A. Szenes. Hilbert polynomials of moduli spaces of rank 2 vector bundles I, Topology32 (1993.1) 587-597 Zbl0798.14003MR1231965
  27. [27] A. Szenes. The combinatorics of the Verlinde formulas, Prépublication (1994) MR1338418
  28. [28] M. Thaddeus. Stable pairs, linear systems and the Verlinde formula, Inv. Math.117 (1994) Zbl0882.14003MR1273268
  29. [29] Y. Tsuchimoto. On the coordinate-free description of the conformal blocks, J. Math. Kyoto Univ.33 (1993) 29-49 Zbl0790.14022MR1203889
  30. [30] A. Tsuchiya, K. Ueno ET Y. Yamada. Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries, Adv. Studies in Pure Math.19 (1989) 459-566 Zbl0696.17010MR1048605
  31. [31] A. Tyurin. On periods of quadratic differentials, Russ. Math. Surv.33 No. 3 (1978) 159 Zbl0429.30037MR526014
  32. [32] E. Verlinde. Fusion rules and modular transformations in 2d-conformal field theory., Nucl. Phys. B300 (1988) 360-376 Zbl1180.81120MR954762
  33. [33] D. Zagier. On the cohomolgy of moduli spaces of rank two vector bundles over curves, (1991) Zbl0845.14016
  34. [34] D. Zagier. Values of the zeta function and their applications, à paraître dans les annales du congrès européen des mathématiques (1992) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.