La formule de Verlinde
Séminaire Bourbaki (1994-1995)
- Volume: 37, page 87-114
- ISSN: 0303-1179
Access Full Article
topHow to cite
topSorger, Christoph. "La formule de Verlinde." Séminaire Bourbaki 37 (1994-1995): 87-114. <http://eudml.org/doc/110210>.
@article{Sorger1994-1995,
author = {Sorger, Christoph},
journal = {Séminaire Bourbaki},
keywords = {fusion rules; rational conformal quantum field theory; conformal blocks; compact Riemann surface; Verlinde formula; dimension formula; generalized theta functions; moduli spaces of semi-stable vector bundles; representations of affine Lie algebras},
language = {fre},
pages = {87-114},
publisher = {Société Mathématique de France},
title = {La formule de Verlinde},
url = {http://eudml.org/doc/110210},
volume = {37},
year = {1994-1995},
}
TY - JOUR
AU - Sorger, Christoph
TI - La formule de Verlinde
JO - Séminaire Bourbaki
PY - 1994-1995
PB - Société Mathématique de France
VL - 37
SP - 87
EP - 114
LA - fre
KW - fusion rules; rational conformal quantum field theory; conformal blocks; compact Riemann surface; Verlinde formula; dimension formula; generalized theta functions; moduli spaces of semi-stable vector bundles; representations of affine Lie algebras
UR - http://eudml.org/doc/110210
ER -
References
top- [1] A. Beauville. Conformal Blocks, Fusion rules and the Verlinde formula, Prépublication alg-geom/9405001 (1994)
- [2] A. Beauville ET Y. Laszlo. Conformal blocks and generalized theta functions, Comm. Math. Physics164 (1994) 385-419 Zbl0815.14015MR1289330
- [3] A. Beauville, M.S. Narasimhan ET S. Ramanan. Spectral curves and the generalised theta divisor, J. reine angew. Math.398 (1989) 169-179 Zbl0666.14015MR998478
- [4] A. Beilinson ET V. Schechtmann. Determinant bundles and Virasoro algebras, Comm. Math. Phys.118 (1988) 651-701 Zbl0665.17010MR962493
- [5] A. Bertram. Generalized SU(2)-theta functions, Inv. Math.113 (1993) 351-372 Zbl0816.14013MR1228129
- [6] A. Bertram ET A. Szenes. Hilbert polynomials of moduli spaces of rank 2 vector bundles II, Topology32 (1993) 599-609 Zbl0798.14004MR1231966
- [7] G. Daskalopoulos ET R. Wentworth. Local degeneration of the moduli space of vector bundles and factorisation of rank 2 theta functions, Math. Annalen297 (1992) 417-466 Zbl0788.32012MR1245399
- [8] G. Daskalopoulos ET R. Wentworth. Factorisation of rank 2 theta functions II: the Verlinde formula, Prépublication (1994)
- [9] R. Donagi ET L. Tu. Theta functions for SL(n) versus GL(n), Prépublication (1992) Zbl0847.14027
- [10] S. Donaldson. Gluing techniques in the cohomology of moduli spaces, à paraître au volume en mémoire de Andreas Floer (edité par H. Hofer, C. Taubes, E. Zehnder) (1994) Zbl0870.57039MR1215963
- [11] J.M. Drezet ET M.S. Narasimhan. Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques., Invent. math.97 (1989) 53-94 Zbl0689.14012MR999313
- [12] G. Faltings. G-bundles and projective connections, J. Alg. Geometry2 (1993) 507-568 Zbl0790.14019MR1211997
- [13] G. Faltings. A proof of the Verlinda formula, J. Alg. Geometry3 (1994) 347- 374 Zbl0809.14009MR1257326
- [14] N. Hitchin. Flat connections and geometric quantization, Comm. Math. Phys.131 (1990) 347-380 Zbl0718.53021MR1065677
- [15] V. Kac. Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge (1985) Zbl0574.17010MR823672
- [16] V. Knizhnik ET A. Zamolodchikov. Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B247 (1984) Zbl0661.17020MR853258
- [17] S. Kumar. Demazure character formula in arbitrary Kac-Moody setting, Inv. math.89 (1987) 395-423 Zbl0635.14023MR894387
- [18] S. Kumar, M.S. Narasimhan ET A. Ramanathan. Infinite Grassmanians and Moduli Spaces of G-bundles, Math. Annalen300 (1993) 395-423 Zbl0803.14012MR1289830
- [19] O. Mathieu. Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque159-160 (1988) MR980506
- [20] M.S. Narasimhan ET T.R. Ramadas. Factorisation of generalized Theta functions I, Inv. Math.114 (1993) 565-623 Zbl0815.14014MR1244913
- [21] W.M. Oxbury ET S.M.J. Wilson. Reciprocity laws in the Verlinde formulae for classical groups, Prépublication, Durham University (1994) Zbl0902.14031
- [22] T. Panteev. Comparison of generalized theta functions, Prépublication (1993)
- [23] C. Pauly. Espaces de modules de fibrés paraboliques et blocs conformes, Prépublication (1994)
- [24] T.R. Ramadas. Factorisation of generalized theta functions II, Prépublication, TIFR Bombay (1994) Zbl0852.14007
- [25] G. Segal ET G. Wilson. Loop groups and equations of KdV type, Pub. math. IHES61 (1985) 5-65 Zbl0592.35112MR783348
- [26] A. Szenes. Hilbert polynomials of moduli spaces of rank 2 vector bundles I, Topology32 (1993.1) 587-597 Zbl0798.14003MR1231965
- [27] A. Szenes. The combinatorics of the Verlinde formulas, Prépublication (1994) MR1338418
- [28] M. Thaddeus. Stable pairs, linear systems and the Verlinde formula, Inv. Math.117 (1994) Zbl0882.14003MR1273268
- [29] Y. Tsuchimoto. On the coordinate-free description of the conformal blocks, J. Math. Kyoto Univ.33 (1993) 29-49 Zbl0790.14022MR1203889
- [30] A. Tsuchiya, K. Ueno ET Y. Yamada. Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries, Adv. Studies in Pure Math.19 (1989) 459-566 Zbl0696.17010MR1048605
- [31] A. Tyurin. On periods of quadratic differentials, Russ. Math. Surv.33 No. 3 (1978) 159 Zbl0429.30037MR526014
- [32] E. Verlinde. Fusion rules and modular transformations in 2d-conformal field theory., Nucl. Phys. B300 (1988) 360-376 Zbl1180.81120MR954762
- [33] D. Zagier. On the cohomolgy of moduli spaces of rank two vector bundles over curves, (1991) Zbl0845.14016
- [34] D. Zagier. Values of the zeta function and their applications, à paraître dans les annales du congrès européen des mathématiques (1992)
Citations in EuDML Documents
top- Christoph Sorger, On moduli of -bundles of a curve for exceptional
- Prakash Belkale, Swarnava Mukhopadhyay, Conformal blocks and cohomology in genus 0
- Edward Frenkel, Vertex algebras and algebraic curves
- Yves Laszlo, Christoph Sorger, The line bundles on the moduli of parabolic -bundles over curves and their sections
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.