Pentes algébriques et pentes analytiques d’un 𝒟 -module

Yves Laurent; Zoghman Mebkhout

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 1, page 39-69
  • ISSN: 0012-9593

How to cite

top

Laurent, Yves, and Mebkhout, Zoghman. "Pentes algébriques et pentes analytiques d’un $\mathcal {D}$-module." Annales scientifiques de l'École Normale Supérieure 32.1 (1999): 39-69. <http://eudml.org/doc/82484>.

@article{Laurent1999,
author = {Laurent, Yves, Mebkhout, Zoghman},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {D-module; analytic slope; microcharacteristic varieties; transcendental slopes; Newton polygon},
language = {fre},
number = {1},
pages = {39-69},
publisher = {Elsevier},
title = {Pentes algébriques et pentes analytiques d’un $\mathcal \{D\}$-module},
url = {http://eudml.org/doc/82484},
volume = {32},
year = {1999},
}

TY - JOUR
AU - Laurent, Yves
AU - Mebkhout, Zoghman
TI - Pentes algébriques et pentes analytiques d’un $\mathcal {D}$-module
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 1
SP - 39
EP - 69
LA - fre
KW - D-module; analytic slope; microcharacteristic varieties; transcendental slopes; Newton polygon
UR - http://eudml.org/doc/82484
ER -

References

top
  1. [1] J.-L. BRYLINSKI, A. DUBSON et M. KASHIWARA, Formule de l'indice pour les modules holonomes et obstruction d'Euler locale, C. R. Acad. Sc. Paris, serie I, 293, 1981, pp. 573-577. Zbl0492.58021MR83a:32010
  2. [2] J. DIEUDONNÉ et A. GROTHENDIECK, Etude Cohomologique des Faisceaux Cohérents, Éléments de Géométrie Algébrique III, Publ. I.H.E.S., 11, 1961. Zbl0118.36206
  3. [3] W. FULTON, Intersection theory, Ergebnisse der Math., Springer, 1984. Zbl0541.14005MR85k:14004
  4. [4] M. KASHIWARA, Systems of microdifferential equations, Progress in Mathematics, 34, Birkhäuser, 1983. Zbl0521.58057MR86b:58113
  5. [5] M. KASHIWARA, Vanishing cycles et holonomic systems of differential equations, Lect. Notes in Math., 1016, Springer, 1983, pp. 134-142. Zbl0566.32022MR85e:58137
  6. [6] M. KASHIWARA et T. KAWAÏ, Second microlocalization and asymptotic expansions, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lect. Notes in Physics, 126, Springer, 1980, pp. 21-76. Zbl0458.46027MR81i:58038
  7. [7] M. KASHIWARA et P. SCHAPIRA, Micro-hyperbolic systems, Acta Mathematica, 142, 1979, pp. 1-55. Zbl0413.35049MR80b:58060
  8. [8] M. KASHIWARA et P. SCHAPIRA, Sheaves on manifolds, Grundlehren der Math., 292, Springer, 1990. Zbl0709.18001MR92a:58132
  9. [9] Y. LAURENT, Théorie de la deuxième microlocalisation dans le domaine complexe, Progress in Math., 53, Birkhäuser, 1985. Zbl0561.32013MR86k:58113
  10. [10] Y. LAURENT, Polygone de Newton et b-fonctions pour les modules microdifférentiels, Ann. Ec. Norm. Sup. 4e série, 20, 1987, pp. 391-441. Zbl0646.58021MR89k:58282
  11. [11] Y. LAURENT, Vanishing cycles of D-modules, Inv. Math., 112, 1993, pp. 491-539. Zbl0799.32031MR94e:32025
  12. [12] Y. LAURENT, Vanishing cycles of irregular D-modules, Prépublications de l'Institut Fourier, to appear in Comp. Math., 304, 1995. Zbl0940.32005
  13. [13] Y. LAURENT et Z. MEBKHOUT, Image inverse d'un D-module et polygone de Newton, to appear. Zbl0993.35007
  14. [14] B. MALGRANGE, Sur les points singuliers des équations différentielles, L'Enseignement Mathématique, 20, 1974, pp. 147-176. Zbl0299.34011MR51 #4316
  15. [15] Z. MEBKHOUT, Le théorème de positivité de l'irrégularité pour les D-modules, The Grothendieck Festschrift III, Progress in Mathematics, 88, 1990, pp. 83-132. Zbl0731.14007MR92j:32031
  16. [16] Z. MEBKHOUT, Le polygone de Newton d'un D-module, Conférence de La Rabida III, Progress in Mathematics, 134, 1996, pp. 237-258. Zbl0853.58095MR97h:32015
  17. [17] J.-P. RAMIS, Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Memoirs of the AMS, 48, 1984, no. 296. Zbl0555.47020MR86e:34021
  18. [18] C. SABBAH, Proximité évanescente, I. la structure polaire d'un D-module. Appendice en collaboration avec F. Castro., Compositio Math., 62, 1987, pp. 283-328. Zbl0622.32012MR90a:32014
  19. [19] M. SATO, T. KAWAÏ et M. KASHIWARA, Hyperfunctions and pseudo-differential equations, Lect. Notes in Math., 287, Springer, 1980, pp. 265-529. Zbl0277.46039MR54 #8747
  20. [20] P. SCHAPIRA, Microdifferential systems in the complex domain, Grundlehren der Math., 269, Springer, 1985. Zbl0554.32022MR87k:58251
  21. [21] LE DUNG TRANG et B. TEISSIER, Limites d'espaces tangents en géométrie analytique, Comment. Math. Helv., 63, 1988, pp. 540-578. Zbl0658.32010MR89m:32025
  22. [22] H. WHITNEY, Tangents to an analytic variety, Annals of Math., 81, 1964, pp. 496-549. Zbl0152.27701MR33 #745

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.