Ergodicity and rigidity for certain subgroups of Diff ω ( S 1 )

Julio C. Rebelo

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 4, page 433-453
  • ISSN: 0012-9593

How to cite

top

Rebelo, Julio C.. "Ergodicity and rigidity for certain subgroups of ${\rm Diff}^\omega (S^1)$." Annales scientifiques de l'École Normale Supérieure 32.4 (1999): 433-453. <http://eudml.org/doc/82493>.

@article{Rebelo1999,
author = {Rebelo, Julio C.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {real analytic diffeomorphisms; ergodic actions; topological rigidity},
language = {eng},
number = {4},
pages = {433-453},
publisher = {Elsevier},
title = {Ergodicity and rigidity for certain subgroups of $\{\rm Diff\}^\omega (S^1)$},
url = {http://eudml.org/doc/82493},
volume = {32},
year = {1999},
}

TY - JOUR
AU - Rebelo, Julio C.
TI - Ergodicity and rigidity for certain subgroups of ${\rm Diff}^\omega (S^1)$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 4
SP - 433
EP - 453
LA - eng
KW - real analytic diffeomorphisms; ergodic actions; topological rigidity
UR - http://eudml.org/doc/82493
ER -

References

top
  1. [Bo] C. BONATTI, Feuilletages Proches d'une Fibration, Ensaios Matematicos, Soc. Bras. Mat., 1993. 
  2. [B-H] R. BOTT and A. HAEFLIGER, On characteristic classes of Γ-foliations, Bull. AMS, 78, N 6, 1972, pp. 1039-1044. Zbl0262.57010MR46 #6370
  3. [Ca] C. CAMACHO, On the local structure of conformal mappings and holomorphic vector fields, Astérisque, 59-60, 1978, pp. 83-94. Zbl0415.30015MR81d:58016
  4. [Ca] C. CARATHEODORY, Theory of Functions of a complex variable, Vol II, Chelsea, 1954. Zbl0056.06703
  5. [E-T] Y. ELIASHBERG and W. THURSTON, Confoliations, University Lecture Series, Vol 13, 1998. Zbl0893.53001MR98m:53042
  6. [Gh-1] E. GHYS, Sur les Groupes Engendrés par des Difféomorphismes Proches de l'Identité, Bol. Soc. Bras. Mat., 24, No. 2, 1993, pp. 137-178. Zbl0809.58004MR95f:58017
  7. [Gh-2] E. GHYS, Rigidité Différentiable des Groupes Fuchsiens, Publ. Math. I.H.E.S., 78, 1993, pp. 163-185. Zbl0812.58066MR95d:57009
  8. [H-H] G. HECTOR and U. HIRSCH, Introduction to the geometry of foliations, part B, Braunschweig, Friedr. Vieweg, 1987. Zbl0704.57001MR92f:57037
  9. [Ka] I. KAPLANSKY, Lie algebras and locally compact groups, Chicago Lectures in Mathematics (The Chicago University Press), 1971. Zbl0223.17001MR43 #2145
  10. [Na-1] I. NAKAI, Separatrix for Non Solvable Dynamics on C, 0, Ann. Inst. Fourier, 44, 2, 1994, pp. 569-599. Zbl0804.57022MR95j:58124
  11. [Na-2] I. NAKAI, A rigidity theorem for transverse dynamics of real analytic foliations of codimension one, (Complex Analytic Methods in Dynamical Systems), Astérisque, 222, 1994, pp. 327-343. Zbl0831.57017MR95f:58061
  12. [Sch] A.A. SCHERBAKOV, On the density of an orbit of a pseudogroup of conformal mappings and a generalization of the Hudai-Verenov theorem, Vestnik Movskovskogo Universiteta Mathematika, 31, 4, 1982, pp. 10-15. Zbl0517.30009
  13. [Su] D. SULLIVAN, The density at infinity of a discrete group of hyperbolic motions, Publ. Math. I.H.E.S., 50, 1979, pp. 171-202. Zbl0439.30034MR81b:58031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.