Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function
- [1] University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba Meguro Tokyo 153-8914 (Japan)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 5, page 1819-1845
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMatsuda, Yoshifumi. "Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function." Annales de l’institut Fourier 59.5 (2009): 1819-1845. <http://eudml.org/doc/10441>.
@article{Matsuda2009,
abstract = {We consider groups of orientation-preserving real analytic diffeomorphisms of the circle which have a finite image under the rotation number function. We show that if such a group is nondiscrete with respect to the $C^1$-topology then it has a finite orbit. As a corollary, we show that if such a group has no finite orbit then each of its subgroups contains either a cyclic subgroup of finite index or a nonabelian free subgroup.},
affiliation = {University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba Meguro Tokyo 153-8914 (Japan)},
author = {Matsuda, Yoshifumi},
journal = {Annales de l’institut Fourier},
keywords = {Rotation number; circle diffeomorphisms; groups; local vector fields; Poincaré rotation number},
language = {eng},
number = {5},
pages = {1819-1845},
publisher = {Association des Annales de l’institut Fourier},
title = {Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function},
url = {http://eudml.org/doc/10441},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Matsuda, Yoshifumi
TI - Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 5
SP - 1819
EP - 1845
AB - We consider groups of orientation-preserving real analytic diffeomorphisms of the circle which have a finite image under the rotation number function. We show that if such a group is nondiscrete with respect to the $C^1$-topology then it has a finite orbit. As a corollary, we show that if such a group has no finite orbit then each of its subgroups contains either a cyclic subgroup of finite index or a nonabelian free subgroup.
LA - eng
KW - Rotation number; circle diffeomorphisms; groups; local vector fields; Poincaré rotation number
UR - http://eudml.org/doc/10441
ER -
References
top- L. Carleson, T. Gamelin, Complex dynamics, (1993), Springer Verlag, New York Zbl0782.30022MR1230383
- Y. Eliashberg, W. Thurston, Confoliations, 13 (1998), Amer. Math. Soc., Providence, RI Zbl0893.53001MR1483314
- E. Ghys, Groups acting on the circle, L’Enseignement Mathématique 47 (2001), 329-407 Zbl1044.37033MR1876932
- E. Ghys, P. de la Harpe, Sur les groups hyperboliques d’après Mikhael Gromov, 83 (1990), Birkhäuser, Boston Zbl0731.20025MR1086648
- G. Hector, U. Hirsch, Introduction to the Geometry of Foliations, Part A, (1981), Friedr. Vieweg and Sohn, Braunschweig Zbl0486.57002MR639738
- Troels Jørgensen, A note on subgroups of , Quart. J. Math. Oxford Ser. (2) 28 (1977), 209-211 Zbl0358.20047MR444839
- G. Margulis, Free subgroups of the homeomorphism group of the circle, C. R. Acad. Sci. Paris Sér. I Math. 9 (2000), 669-674 Zbl0983.37029MR1797749
- Isao Nakai, Separatrices for nonsolvable dynamics on , Ann. Inst. Fourier (Grenoble) 44 (1994), 569-599 Zbl0804.57022MR1296744
- A. Navas, On uniformly quasisymmetric groups of circle diffeomorphisms, Ann. Acad. Sci. Fenn. Math. 31 (2006), 437-462 Zbl1098.22011MR2248825
- Julio C. Rebelo, Ergodicity and rigidity for certain subgroups of , Ann. Sci. École Norm. Sup. (4) 32 (1999), 433-453 Zbl0968.37002MR1693579
- A. Selberg, On discontinuous groups in higher-dimmensional symmetric spaces, Contributions to function theories (1960), 147-164, Tata Institute of Fundamental Research, Bombay Zbl0201.36603MR130324
- F. Sergeraert, Feuilltages et difféomorphismes infiniment tangents à l’identité, Invent. Math. 39 (1977), 253-275 Zbl0327.58004MR474327
- G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203-258 Zbl0145.07903MR107016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.