Generalized Hamilton flow and Poisson relation for the scattering kernel

Luchezar Stoyanov

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 3, page 361-382
  • ISSN: 0012-9593

How to cite

top

Stoyanov, Luchezar. "Generalized Hamilton flow and Poisson relation for the scattering kernel." Annales scientifiques de l'École Normale Supérieure 33.3 (2000): 361-382. <http://eudml.org/doc/82520>.

@article{Stoyanov2000,
author = {Stoyanov, Luchezar},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {generalized Hamiltonian flow; singularity; Sard theorems; Poisson relation},
language = {eng},
number = {3},
pages = {361-382},
publisher = {Elsevier},
title = {Generalized Hamilton flow and Poisson relation for the scattering kernel},
url = {http://eudml.org/doc/82520},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Stoyanov, Luchezar
TI - Generalized Hamilton flow and Poisson relation for the scattering kernel
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 3
SP - 361
EP - 382
LA - eng
KW - generalized Hamiltonian flow; singularity; Sard theorems; Poisson relation
UR - http://eudml.org/doc/82520
ER -

References

top
  1. [1] ABRAHAM R., MARSDEN J., Foundations of Mechanics, London, Benjamin/Cummings, 1978. Zbl0393.70001MR81e:58025
  2. [2] EDGAR G., Measure, Topology, and Fractal Geometry, New York, Springer, 1990. Zbl0727.28003MR92a:54001
  3. [3] GUILLEMIN G., Sojourn time and asymptotic properties of the scattering matrix, Publ. RIMS Kyoto Univ. 12 (1977) 69-88. Zbl0381.35064MR56 #6759
  4. [4] HÖRMANDER L., The Analysis of Linear Partial Differential Operators, Vol. III, Berlin, Springer, 1985. Zbl0601.35001
  5. [5] LAX P., PHILLIPS R., Scattering Theory, Academic Press, New York, 1967. Zbl0186.16301
  6. [6] MELROSE R., Microlocal parametrices for diffractive boundary value problems, Duke Math. J. 42 (1975) 605-635. Zbl0368.35055MR58 #24409
  7. [7] MELROSE R., Geometric Scattering Theory, Cambridge Univ. Press, Cambridge, 1994. Zbl0849.58071
  8. [8] MELROSE R., SJÖSTRAND J., Singularities in boundary value problems, I, Comm. Pure Appl. Math. 31 (1978) 593-617. Zbl0368.35020
  9. [9] MELROSE R., SJÖSTRAND J., Singularities in boundary value problems, II, Comm. Pure Appl. Math. 35 (1982) 129-168. Zbl0546.35083
  10. [10] MORAWETZ C., RALSTON J., STRAUSS W., Decay of solutions to the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math. 30 (1977) 447-508. Zbl0372.35008MR58 #23091a
  11. [11] PETKOV V., High frequency asymptotics of the scattering amplitude for non-convex bodies, Comm. Partial Differential Equations 5 (1980) 293-329. Zbl0435.35065MR82c:35061
  12. [12] PETKOV V., STOYANOV L., Geometry of Reflecting Rays and Inverse Spectral Problems, Chichester, Wiley, 1992. Zbl0761.35077MR93i:58161
  13. [13] PETKOV V., STOYANOV L., Sojourn times of trapping rays and the behaviour of the modified resolvent of the Laplacian, Ann. Inst. Henri Poincaré (Physique Théorique) 62 (1995) 17-45. Zbl0838.35093MR96g:58199
  14. [14] STOYANOV L., Rigidity of the scattering length spectrum, Preprint 1997/1998. Zbl0910.35143
  15. [15] STOYANOV L., Poisson relation for the scattering kernel and inverse scattering by obstacles, in : Séminaire EDP, Exposé V, École Polytechnique, 1994-1995. Zbl0888.58070
  16. [16] TAYLOR M., Grazing rays and reflection of singularities to wave equations, Comm. Pure Appl. Math. 29 (1976) 1-38. Zbl0318.35009MR53 #1035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.