Poisson relation for the scattering kernel and inverse scattering by obstacles

L. Stoyanov

Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995)

  • page 1-10

How to cite

top

Stoyanov, L.. "Poisson relation for the scattering kernel and inverse scattering by obstacles." Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995): 1-10. <http://eudml.org/doc/112116>.

@article{Stoyanov1994-1995,
author = {Stoyanov, L.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {spectral geometry; inverse obstacle scattering; geometric scattering theory},
language = {eng},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Poisson relation for the scattering kernel and inverse scattering by obstacles},
url = {http://eudml.org/doc/112116},
year = {1994-1995},
}

TY - JOUR
AU - Stoyanov, L.
TI - Poisson relation for the scattering kernel and inverse scattering by obstacles
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1994-1995
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - eng
KW - spectral geometry; inverse obstacle scattering; geometric scattering theory
UR - http://eudml.org/doc/112116
ER -

References

top
  1. [G] V. Guillemin, Sojourn time and asymptotic properties of the scattering matrix, Publ. RIMS Kyoto Univ.12 (1977), 69-88. Zbl0381.35064MR448453
  2. [GM] V. Guillemin and R. Melrose, The Poisson sumation formula for manifolds with boundary, Adv. in Math.32 (1979), 204-232. Zbl0421.35082MR539531
  3. [H] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. III, Berlin, Springer, 1985. Zbl1115.35005
  4. [LP1] P. Lax and R. Phillips, Scattering Theory, Academic Press, New York, 1967. Zbl0186.16301MR217440
  5. [LP2] P. Lax and R. Phillips, The scattering of sound waves by an obstacle, Comm. Pure Appl. Math.30 (1977), 195-233. Zbl0335.35075MR442510
  6. [Ma] A. Majda, A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math.30 (1977), 165-194. Zbl0335.35076MR435625
  7. [MaT] A. Majda and M. Taylor, Inverse scattering problems for transparant obstacles, electromagnetic waves and hyperbolic systems, Commun. Partial Diff. Equations2 (1977), 395-438. Zbl0373.35055MR437946
  8. [M1] R. Melrose, Microlocal parametrices for diffractive boundary value problems, Duke Math. J.42 (1975), 605-635. Zbl0368.35055MR517101
  9. [M2] R. Melrose, Equivalence of glancing hypersurfaces, Invent. Math.37, 165-191 (1976) Zbl0354.53033MR436225
  10. [M3] R. Melrose, Geometric Scattering Theory, Lectures at Stanford University, M.I.T.1994. Zbl0849.58071MR1350074
  11. [MS] R. Melrose and J. Sjöstrand, Singularities in boundary value problems. I, II. Comm. Pure Appl. Math.31 (1978), 593-617; 35 (1982),129-168. Zbl0546.35083
  12. [P] V. Petkov, High frequency asymptotics of the scattering amplitude for non-convex bodies. Commun. Partial Diff. Equations5 (1980), 293-329. Zbl0435.35065MR562545
  13. [PS1] V. Petkov and L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, John Wiley & Sons, Chichester, 1992. Zbl0761.35077MR1172998
  14. [PS2] V. Petkov and L. Stoyanov, Sojourn times of trapping rays and the behaviour of the modified resolvent of the Laplacian, Ann. Inst. Henri Poincare (Physique Theorique), to appear. Zbl0838.35093MR1313359
  15. [So] H. Soga, Singularities of the scattering kernel for convex obstacles, J. Math. Kyoto Univ.22 (1983), 729-765. Zbl0511.35070MR685528
  16. [St1] L. Stoyanov, Regularity properties of the generalized Hamiltonian flow, Seminaire EDP, Ecole Polytechnique, Exposé, 1992 -1993. Zbl0881.58028MR1240547
  17. [St2] L. Stoyanov, Generalized Hamiltonian flow and Poisson relation for the scattering kernel, Preprint, Maths. Dept., University of Western Australia1994. 
  18. [T] M. Taylor, Grazing rays and reflection of singularities to wave equations, Commun. Pure Appl. Math.29 (1978), 1-38. Zbl0318.35009MR397175
  19. [Y] K. Yamamoto, Characterization of a convex obstacle by singularities of the scattering kernel, J. Diff. Equations64 (1986), 283-293. Zbl0611.35066MR857711

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.