Null form estimates for ( 1 / 2 , 1 / 2 ) symbols and local existence for a quasilinear dirichlet-wave equation

Hart F. Smith; Christopher D. Sogge

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 4, page 485-506
  • ISSN: 0012-9593

How to cite

top

Smith, Hart F., and Sogge, Christopher D.. "Null form estimates for $(1/2,1/2)$ symbols and local existence for a quasilinear dirichlet-wave equation." Annales scientifiques de l'École Normale Supérieure 33.4 (2000): 485-506. <http://eudml.org/doc/82524>.

@article{Smith2000,
author = {Smith, Hart F., Sogge, Christopher D.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {convex obstacle problem; local in time existence result; Dirichle initial boundary value problem; exterior domain; strictly geodesically concave boundary},
language = {eng},
number = {4},
pages = {485-506},
publisher = {Elsevier},
title = {Null form estimates for $(1/2,1/2)$ symbols and local existence for a quasilinear dirichlet-wave equation},
url = {http://eudml.org/doc/82524},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Smith, Hart F.
AU - Sogge, Christopher D.
TI - Null form estimates for $(1/2,1/2)$ symbols and local existence for a quasilinear dirichlet-wave equation
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 4
SP - 485
EP - 506
LA - eng
KW - convex obstacle problem; local in time existence result; Dirichle initial boundary value problem; exterior domain; strictly geodesically concave boundary
UR - http://eudml.org/doc/82524
ER -

References

top
  1. [1] BEALS M., BEZARD M., Low regularity local solutions for field equations, Comm. Partial Differential Equations 21 (1996) 79-124. Zbl0852.35098MR97e:35111
  2. [2] KLAINERMAN S., MACHEDON M., Space-time estimates for null forms and the local existence theorem, Comm. Pure. Appl. Math. 46 (1993) 1221-1268. Zbl0803.35095MR94h:35137
  3. [3] MELROSE R., TAYLOR M., Near peak scattering and the corrected Kirchoff approximation for a convex obstacle, Adv. Math. 55 (1985) 242-315. Zbl0591.58034MR86m:35095
  4. [4] MELROSE R., TAYLOR M., The radiation pattern of a diffractive wave near the shadow boundary, Comm. Partial Differential Equations 11 (1985) 599-672. Zbl0632.35056MR87i:35109
  5. [5] Melrose R., Taylor M., Boundary problems for the wave equation with grazing and gliding rays, Manuscript. 
  6. [6] SEEGER A., SOGGE C., STEIN E.M., Regularity properties of Fourier integral operators, Ann. Math. 133 (1991) 231-251. Zbl0754.58037MR92g:35252
  7. [7] SMITH H., A parametrix construction for wave equations with C¹,¹ coefficients, Annales de l'Institut Fourier 48 (1998). Zbl0974.35068MR99h:35119
  8. [8] SMITH H., Strichartz and null form estimates for metrics of bounded curvature, Preprint. 
  9. [9] SMITH H., Wave equations with low regularity coefficients, in : Documenta Mathematica, Extra Volume ICM, II, Berlin, 1998, pp. 723-730. Zbl0909.35081MR99e:35126
  10. [10] SMITH H., SOGGE C., On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. 8 (1995) 879-916. Zbl0860.35081MR95m:35128
  11. [11] SOGGE C., On local existence for nonlinear wave equations satisfying variable coefficient null conditions, Comm. PDE 18 (1993) 1795-1821. Zbl0792.35125MR94m:35199
  12. [12] SOGGE C., Lectures on Nonlinear Wave Equations, Int. Press, 1995. Zbl1089.35500MR2000g:35153
  13. [13] ZWORSKI M., High frequency scattering by a convex obstacle, Duke Math. J. 61 (1990) 545-634. Zbl0732.35060MR92c:35070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.