Profondeur homotopique et conjecture de grothendieck

Christophe Eyral

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 6, page 823-836
  • ISSN: 0012-9593

How to cite

top

Eyral, Christophe. "Profondeur homotopique et conjecture de grothendieck." Annales scientifiques de l'École Normale Supérieure 33.6 (2000): 823-836. <http://eudml.org/doc/82535>.

@article{Eyral2000,
author = {Eyral, Christophe},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {analytic space},
language = {fre},
number = {6},
pages = {823-836},
publisher = {Elsevier},
title = {Profondeur homotopique et conjecture de grothendieck},
url = {http://eudml.org/doc/82535},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Eyral, Christophe
TI - Profondeur homotopique et conjecture de grothendieck
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 6
SP - 823
EP - 836
LA - fre
KW - analytic space
UR - http://eudml.org/doc/82535
ER -

References

top
  1. [1] EILENBERG S., WILDER R.L., Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942) 613-622. Zbl0061.41103MR4,87e
  2. [2] EYRAL C., Tomographie des variétés singulières et théorèmes de Lefschetz, Prépublication 97-22 du LATP, UMR CNRS 6632, Marseille, 1997. 
  3. [3] EYRAL C., Sur l'homotopie des espaces stratifiés, Int. Math. Research Notices 13 (1999) 717-734. Zbl0940.55011MR2000f:57029
  4. [4] GRAY B., Homotopy Theory. An Introduction to Algebraic Topology, Academic Press, New York, 1975. Zbl0322.55001
  5. [5] GROTHENDIECK A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, (SGA2), Adv. Stud. Pure Math., Vol. 2, North-Holland, Amsterdam, 1968. Zbl0197.47202MR57 #16294
  6. [6] HAMM H.A., LÊ D.T., Lefschetz theorems on quasi projectives varieties, Bull. Soc. Math. France 113 (1985) 123-142. Zbl0602.14009
  7. [7] HAMM H.A., LÊ D.T., Rectified homotopical depth and Grothendieck conjectures, in : The Grothendieck Festschrift, Progr. Math. 87, Vol. II, Birkhäuser, Boston, 1990, pp. 311-351. Zbl0725.14016MR92j:32131
  8. [8] HARDT R., Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1977) 207-217. Zbl0331.32006MR56 #12302
  9. [9] LÊ D.T., TEISSIER B., Cycles évanescents, sections planes et condition de Whitney, II, in : Singularities, Part 2, (Arcata, CA, 1981), Proc. Sympos. Pures Math., Vol. 40, Amer. Math. Soc., Providence, 1983, pp. 65-103. Zbl0532.32003
  10. [10] PRILL D., Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967) 375-386. Zbl0179.12301MR35 #1829
  11. [11] SPANIER E.H., Algebraic Topology, Springer-Verlag, New York, 1989 ; (Corrected reprint of the 1966 original). 
  12. [12] STALLINGS J., Lectures on Polyhedral Topology, Tata Institute of Fundamental Research, Bombay, 1968. Zbl0182.26203
  13. [13] WHITNEY H., Complex Analytic Varieties, Addison-Wesley, Reading, MA, 1972. Zbl0265.32008MR52 #8473

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.