Lefschetz theorems on quasi-projective varieties

Helmut A. Hamm; Lê Dũng Tráng

Bulletin de la Société Mathématique de France (1985)

  • Volume: 113, page 123-142
  • ISSN: 0037-9484

How to cite


Hamm, Helmut A., and Lê Dũng Tráng. "Lefschetz theorems on quasi-projective varieties." Bulletin de la Société Mathématique de France 113 (1985): 123-142. <http://eudml.org/doc/87476>.

author = {Hamm, Helmut A., Lê Dũng Tráng},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lefschetz theorems; structure of families; m-connectedness},
language = {eng},
pages = {123-142},
publisher = {Société mathématique de France},
title = {Lefschetz theorems on quasi-projective varieties},
url = {http://eudml.org/doc/87476},
volume = {113},
year = {1985},

AU - Hamm, Helmut A.
AU - Lê Dũng Tráng
TI - Lefschetz theorems on quasi-projective varieties
JO - Bulletin de la Société Mathématique de France
PY - 1985
PB - Société mathématique de France
VL - 113
SP - 123
EP - 142
LA - eng
KW - Lefschetz theorems; structure of families; m-connectedness
UR - http://eudml.org/doc/87476
ER -


  1. [A-F] ANDREOTTI (A.) and FRANKEL (T.), The Lefschetz theorem on hyperplane sections, Ann. of Math., 69, 1959, pp. 713-717. Zbl0115.38405MR31 #1685
  2. [C1] CHÉNIOT (D.), Une démonstration du théorème de Zariski sur les sections hyperplanes d'une hypersurface projective et du théorème de Van Kampen sur le groupe fondamental du complémentaire d'une courbe projective plane, Compositio Math., Vol. 27, 1973, pp. 141-158. Zbl0294.14010MR51 #3168
  3. [C2] CHÉNIOT (D.), Un théorème du type de Lefschetz, Ann. Inst. Fourier, Vol. 25, No. 1, 1975, pp. 195-213. Zbl0332.14007MR52 #10738
  4. [D] DELIGNE (P), Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien (d'après W. Fulton), Séminaire Bourbaki, n° 543, Springer Lecture Notes, No. 842, 1981, pp. 1-10. Zbl0478.14008MR83f:14026
  5. [F] FULTON (W.), Some aspects of positivity in algebraic geometry, to be published in the Proceedings of the 1982 International Congress of Mathematicians in Warsaw held in 1983. Zbl0611.14012
  6. [F-L] FULTON (W.) and LAZARSFELD (R), Connectivity and its applications in algebraic geometry, Springer Lecture Notes No. 862, 1981, pp. 26-92. Zbl0484.14005MR83i:14002
  7. [G-M] GORESKY (M.) and MACPHERSON (R.), Stratified Morse theory, in A.M.S. Proc. of Symp. in Pure Math., Vol. 40, part 1, 1983, pp. 517-533. Zbl0526.57022MR84k:58017
  8. [Gr] GROTHENDIECK (A.), Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), Masson, Paris, North-Holland, Amsterdam, 1968. Zbl0197.47202MR57 #16294
  9. [H1] HAMM (H. A.), Lefschetz theorems for singular varieties, in A.M.S. Proc. of Symp. in Pure Math., Vol. 40, part 1, 1983, pp. 547-557. Zbl0525.14011MR85d:32025
  10. [H2] HAMM (H. A.), Zum Homotopietyp Steinscher Räume, J. Reine angew. Math., Vol. 338, 1983, pp. 121-135. Zbl0491.32010MR84i:32021
  11. [H3] HAMM (H. A.), Lokale topologische Eigenschaften komplexer Räume, Math. Ann., Vol. 191, 1971, pp. 235-252. Zbl0214.22801MR44 #3357
  12. [H-L] HAMM (H. A.), LÊ (D. T.), Un théorème de Zariski du type de Lefschetz, Ann. Sc. Ec. Norm. Sup. [(4), 1973, pp. 317-366. Zbl0276.14003MR53 #5582
  13. [Hi] HIRONAKA (H.), Stratification and flatness, in Proc. Nordic Summer School, Real and Complex Singularities, Per Holm, Oslo, 1976, Sijthoff and Noordhoff Int. Publ., 1977, pp. 199-265. Zbl0424.32004MR58 #17187
  14. [L] LÊ (D. T.), Vanishing cycles on complex analytic spaces, Kokyuroku Series of Res. Inst. Math. Sc., Kyoto University, Proc. of Symp. on various problems in Algebraic Analysis, 1975, pp. 299-318. 
  15. [L-T1] LÊ (D. T.) and TEISSIER (B.), Variétés polaires locales et classes de Chern des variétés singulières, Ann. Math., Vol. 114, 1981, pp. 457-491. Zbl0488.32004MR83k:32012a
  16. [L-T2] LÊ (D. T.) and TEISSIER (B.), Cycles évanescents, sections planes et conditions de Whitney II, in A.M.S. Proc. of Symp. in Pure Math., Vol. 40, part 2, 1983, pp. 65-103. Zbl0532.32003MR86c:32005
  17. [Ma] MATHER (J.), Notes on topological stability, Harvard notes, 1970. 
  18. [M1] MILNOR (J.), Morse theory, Ann. Math. Stud., No. 51, Princeton, 1963. Zbl0108.10401MR29 #634
  19. [M2] MILNOR (J.), Singular points of complex hypersurfaces, Ann. Math. Stud., No. 61, Princeton, 1968. Zbl0184.48405MR39 #969
  20. [M3] MILNOR (J.), Lectures on the h-cobordism theorem, Princeton Mathematical Notes, 1965. Zbl0161.20302MR32 #8352
  21. [Mo] MORSE (M.), The calculus of variations in the large, Amer. Math. Soc. Colloq. Pub., Vol. 18, 1934. Zbl0011.02802MR98f:58070JFM60.0450.01
  22. [P] PRILL (D.), Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J., Vol. 34, 1967, pp. 375-386. Zbl0179.12301MR35 #1829
  23. [S] SMALE (S).., Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math., Vol. 74, 1961, pp. 391-406. Zbl0099.39202MR25 #580
  24. [Si] SIERSMA (D.), Singularities of functions on boundaries, corners, etc..., Quat. J. Math. Oxford Ser. (2), Vol. 32, 1981, pp. 119-127. Zbl0417.58002MR82m:58011
  25. [Te] TEISSIER (B.)., Multiplicités polaires, sections planes et conditions de Whitney, Comptes rendus de la Conférence Internationale de La Rabida 1981, Springer Lecture Notes, No. 961, 1982, pp. 314-491. Zbl0585.14008MR85i:32019
  26. [T] THOM (R.), Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., Vol. 75, 1969, pp. 240-284. Zbl0197.20502MR39 #970
  27. [W] WHITNEY (H.), Tangents to an analytic variety, Ann. of Math., Vol. 81, 1965, pp. 496-549. Zbl0152.27701MR33 #745
  28. [Z] ZARISKI (O.), On the Poincaré group of projective hypersurface, Ann. Math., Vol. 38, 1937, pp. 131-141. Zbl0016.04102JFM63.0621.03

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.