Derived quot schemes

Ionuţ Ciocan-Fontanine; Mikhail Kapranov

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 3, page 403-440
  • ISSN: 0012-9593

How to cite

top

Ciocan-Fontanine, Ionuţ, and Kapranov, Mikhail. "Derived quot schemes." Annales scientifiques de l'École Normale Supérieure 34.3 (2001): 403-440. <http://eudml.org/doc/82546>.

@article{Ciocan2001,
author = {Ciocan-Fontanine, Ionuţ, Kapranov, Mikhail},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Quot schemes; Grassmannian},
language = {eng},
number = {3},
pages = {403-440},
publisher = {Elsevier},
title = {Derived quot schemes},
url = {http://eudml.org/doc/82546},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Ciocan-Fontanine, Ionuţ
AU - Kapranov, Mikhail
TI - Derived quot schemes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 3
SP - 403
EP - 440
LA - eng
KW - Quot schemes; Grassmannian
UR - http://eudml.org/doc/82546
ER -

References

top
  1. [1] Bousfield A.K., Gugenheim V.K.A.M., On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc.179 (1976). Zbl0338.55008MR425956
  2. [2] Ciocan-Fontanine I., Kapranov M., Derived Hilbert schemes, preprint Math.AG/0005155. 
  3. [3] Fulton W., Intersection Theory, Springer-Verlag, 1984. Zbl0541.14005MR732620
  4. [4] Gotzmann G., Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z.158 (1978) 61-70. Zbl0352.13009MR480478
  5. [5] Grothendieck A., Techniques de construction et théorèmes d'existence en géometrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki221 (1960/61). Zbl0236.14003
  6. [6] Grothendieck A., Verdier J.-L., Préfaisceaux (SGA4 Exp. I), Lecture Notes in Mathematics, 269, Springer-Verlag, Berlin, 1972. Zbl0249.18021MR354653
  7. [7] Hinich V., Dg-coalgebras as formal stacks, preprint math.AG/9812034. 
  8. [8] Husemoller D., Moore J., Stasheff J., Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra5 (1975) 113-185. Zbl0364.18008MR365571
  9. [9] Kapranov M., Injective resolutions of BG derived moduli spaces of local systems, preprint alg-geom/9710027, to appear in J. Pure Appl. Alg. Zbl0972.18012MR1801413
  10. [10] Kapranov M., Rozansky–Witten invariants via Atiyah classes, Compositio Math.115 (1999) 71-113. Zbl0993.53026
  11. [11] Kollár J., Rational Curves on Algebraic Varieties, Springer-Verlag, 1996. Zbl0877.14012MR1440180
  12. [12] Kontsevich M., Enumeration of rational curves via torus actions, in: Dijkgraaf R., Faber C., van der Geer G. (Eds.), The Moduli Space of Curves, Progress in Math., 129, Birkhäuser, Boston, 1995, pp. 335-368. Zbl0885.14028MR1363062
  13. [13] Lehmann D., Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque45 (1977). Zbl0367.55008MR488041
  14. [14] Loday J.-L., Cyclic Homology, Springer-Verlag, 1995. Zbl0780.18009MR1600246
  15. [15] Markl M., A cohomology theory for A(m)-algebras and applications, J. Pure Appl. Alg.83 (1992) 141-175. Zbl0801.55004MR1191090
  16. [16] McCleary J., User's Guide to Spectral Sequences, Math. Lecture Ser., 12, Publish or Perish, Wilmington, DE, 1985. Zbl0577.55001MR820463
  17. [17] Mumford D., Lectures on Curves on an Algebraic Surface, Princeton Univ. Press, Princeton, NJ, 1966. Zbl0187.42701MR209285
  18. [18] Quillen D., Homotopical Algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin, 1967. Zbl0168.20903MR223432
  19. [19] Quillen D., Rational homotopy theory, Ann. Math.90 (1969) 205-295. Zbl0191.53702MR258031
  20. [20] Rezk C., Spaces of algebra structures and cohomology of operads, Thesis, MIT, 1996. 
  21. [21] Serre J.-P., Faisceaux algébriques cohérents, Ann. of Math.61 (1955) 197-278. Zbl0067.16201MR68874
  22. [22] Simpson C., Descente pour les n-champs, preprint math.AG/9807049. 
  23. [23] Stasheff J.D., Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc.108 (1963) 275-312. Zbl0114.39402MR158400
  24. [24] Stasheff J.D., Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, in: Kulish P.P. (Ed.), Quantum Groups, Lecture Notes Math., 1510, Springer-Verlag, 1992, pp. 120-137. Zbl0758.17010MR1183483
  25. [25] Viehweg E., Quasi-projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 30, Springer-Verlag, Berlin, 1995. Zbl0844.14004MR1368632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.