Derived quot schemes
Ionuţ Ciocan-Fontanine; Mikhail Kapranov
Annales scientifiques de l'École Normale Supérieure (2001)
- Volume: 34, Issue: 3, page 403-440
- ISSN: 0012-9593
Access Full Article
topHow to cite
topCiocan-Fontanine, Ionuţ, and Kapranov, Mikhail. "Derived quot schemes." Annales scientifiques de l'École Normale Supérieure 34.3 (2001): 403-440. <http://eudml.org/doc/82546>.
@article{Ciocan2001,
author = {Ciocan-Fontanine, Ionuţ, Kapranov, Mikhail},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Quot schemes; Grassmannian},
language = {eng},
number = {3},
pages = {403-440},
publisher = {Elsevier},
title = {Derived quot schemes},
url = {http://eudml.org/doc/82546},
volume = {34},
year = {2001},
}
TY - JOUR
AU - Ciocan-Fontanine, Ionuţ
AU - Kapranov, Mikhail
TI - Derived quot schemes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 3
SP - 403
EP - 440
LA - eng
KW - Quot schemes; Grassmannian
UR - http://eudml.org/doc/82546
ER -
References
top- [1] Bousfield A.K., Gugenheim V.K.A.M., On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc.179 (1976). Zbl0338.55008MR425956
- [2] Ciocan-Fontanine I., Kapranov M., Derived Hilbert schemes, preprint Math.AG/0005155.
- [3] Fulton W., Intersection Theory, Springer-Verlag, 1984. Zbl0541.14005MR732620
- [4] Gotzmann G., Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z.158 (1978) 61-70. Zbl0352.13009MR480478
- [5] Grothendieck A., Techniques de construction et théorèmes d'existence en géometrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki221 (1960/61). Zbl0236.14003
- [6] Grothendieck A., Verdier J.-L., Préfaisceaux (SGA4 Exp. I), Lecture Notes in Mathematics, 269, Springer-Verlag, Berlin, 1972. Zbl0249.18021MR354653
- [7] Hinich V., Dg-coalgebras as formal stacks, preprint math.AG/9812034.
- [8] Husemoller D., Moore J., Stasheff J., Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra5 (1975) 113-185. Zbl0364.18008MR365571
- [9] Kapranov M., Injective resolutions of BG derived moduli spaces of local systems, preprint alg-geom/9710027, to appear in J. Pure Appl. Alg. Zbl0972.18012MR1801413
- [10] Kapranov M., Rozansky–Witten invariants via Atiyah classes, Compositio Math.115 (1999) 71-113. Zbl0993.53026
- [11] Kollár J., Rational Curves on Algebraic Varieties, Springer-Verlag, 1996. Zbl0877.14012MR1440180
- [12] Kontsevich M., Enumeration of rational curves via torus actions, in: Dijkgraaf R., Faber C., van der Geer G. (Eds.), The Moduli Space of Curves, Progress in Math., 129, Birkhäuser, Boston, 1995, pp. 335-368. Zbl0885.14028MR1363062
- [13] Lehmann D., Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque45 (1977). Zbl0367.55008MR488041
- [14] Loday J.-L., Cyclic Homology, Springer-Verlag, 1995. Zbl0780.18009MR1600246
- [15] Markl M., A cohomology theory for A(m)-algebras and applications, J. Pure Appl. Alg.83 (1992) 141-175. Zbl0801.55004MR1191090
- [16] McCleary J., User's Guide to Spectral Sequences, Math. Lecture Ser., 12, Publish or Perish, Wilmington, DE, 1985. Zbl0577.55001MR820463
- [17] Mumford D., Lectures on Curves on an Algebraic Surface, Princeton Univ. Press, Princeton, NJ, 1966. Zbl0187.42701MR209285
- [18] Quillen D., Homotopical Algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin, 1967. Zbl0168.20903MR223432
- [19] Quillen D., Rational homotopy theory, Ann. Math.90 (1969) 205-295. Zbl0191.53702MR258031
- [20] Rezk C., Spaces of algebra structures and cohomology of operads, Thesis, MIT, 1996.
- [21] Serre J.-P., Faisceaux algébriques cohérents, Ann. of Math.61 (1955) 197-278. Zbl0067.16201MR68874
- [22] Simpson C., Descente pour les n-champs, preprint math.AG/9807049.
- [23] Stasheff J.D., Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc.108 (1963) 275-312. Zbl0114.39402MR158400
- [24] Stasheff J.D., Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, in: Kulish P.P. (Ed.), Quantum Groups, Lecture Notes Math., 1510, Springer-Verlag, 1992, pp. 120-137. Zbl0758.17010MR1183483
- [25] Viehweg E., Quasi-projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 30, Springer-Verlag, Berlin, 1995. Zbl0844.14004MR1368632
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.