Geometric and categorical nonabelian duality in complex geometry
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 4, page 769-797
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topKosarew, Siegmund. "Geometric and categorical nonabelian duality in complex geometry." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 769-797. <http://eudml.org/doc/84486>.
@article{Kosarew2002,
abstract = {The Leitmotiv of this work is to find suitable notions of dual varieties in a general sense. We develop the basic elements of a duality theory for varieties and complex spaces, by adopting a geometric and a categorical point of view. One main feature is to prove a biduality property for each notion which is achieved in most cases.},
author = {Kosarew, Siegmund},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {769-797},
publisher = {Scuola normale superiore},
title = {Geometric and categorical nonabelian duality in complex geometry},
url = {http://eudml.org/doc/84486},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Kosarew, Siegmund
TI - Geometric and categorical nonabelian duality in complex geometry
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 769
EP - 797
AB - The Leitmotiv of this work is to find suitable notions of dual varieties in a general sense. We develop the basic elements of a duality theory for varieties and complex spaces, by adopting a geometric and a categorical point of view. One main feature is to prove a biduality property for each notion which is achieved in most cases.
LA - eng
UR - http://eudml.org/doc/84486
ER -
References
top- [1] J. F. Adams, “Stable homotopy and generalized homology”, The University of Chicago Press, Chicago, 1974. Zbl0309.55016MR402720
- [2] A. Altman – S. Kleiman, Compactifying the Picard Scheme, Adv. Math. 35 (1980), 50-112. Zbl0427.14015MR555258
- [3] V. Balaji – L. Brambila-Paz – P. Newstead, Stability of the Poincaré bundle, Math. Nachr. 188 (1997), 5-15. Zbl0907.14014MR1484665
- [4] A. Bondal – D. Orlov., Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), 327-344. Zbl0994.18007MR1818984
- [5] A. Bondal – D. Orlov, Semiorthogonal decomposition for algebraic varieties, MPI Bonn, Preprint 95-15.
- [6] T. Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), 25-34. Zbl0937.18012MR1651025
- [7] I. Ciocan-Fontanine – M. M. Kapranov, Derived Quot schemes, Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), 403-440. Zbl1050.14042MR1839580
- [8] I. Ciocan-Fontanine – M. M. Kapranov, Derived Hilbert schemes, J. Amer. Math. Soc. 15 (2002), 787-815. Zbl1074.14003MR1915819
- [9] A. Dold – D. Puppe, Duality, trace and transfer, In: “Proc. Steklov Inst.” (4); Topology, A collection of papers, P. S. Alexandrov (ed.) (AMS translation), 1984, pp. 85-103. Zbl0556.55006MR733829
- [10] A. A. Kirillov, “Elements of the theory of representations”, Grundl. math. Wiss. 220, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0342.22001MR412321
- [11] S. Kosarew, Nonabelian duality on Stein spaces, Amer. J. Math. 120 (1998), 637-648. Zbl0911.32023MR1623408
- [12] S. Kosarew – C. Okonek, Global Moduli Spaces and Simple Holomorphic bundles, Publ. RIMS, Kyoto Univ. 25 (1989), 1-19. Zbl0679.32024MR999347
- [13] A. Maciocia, Generalized Fourier-Mukai transforms, J. Reine Angew. Math. 480 (1996), 197-211. Zbl0877.14014MR1420564
- [14] S. Mac Lane, “Categories for the Working Mathematician”, Grad. Texts in Math. 5, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0232.18001MR1712872
- [15] S. Mukai, On the moduli space of bundles on a K3-surface, In: “Vector Bundles on Algebraic Varieties” Bombay Coll.,1984, Tata Inst., Oxford University Press, 1987, pp. 341-413. Zbl0674.14023MR893604
- [16] M. S. Narasimhan – S. Ramanan, Deformations of the moduli spaces of vector bundles over an algebraic curve, Ann. Math. 101 (1975), 391-417. Zbl0314.14004MR384797
- [17] A. Rosenberg, “Noncommutative Algebraic Geometry and Representations of Quantized Algebras”, Kluwer Acad. Publ., Dordrecht-London-Boston, 1995. Zbl0839.16002MR1347919
- [18] C. S. Seshadri, “Fibrés vectoriels sur les courbes algébriques”, Astérisque 96 (1982). Zbl0517.14008
- [19] C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. IHES 79 (1994), 47-129. Zbl0891.14005MR1307297
- [20] C. Simpson, A closed model structure for -categories, internal , -stacks and generalized Seifert-Van Kampen, Preprint math. AG 9704006.
- [21] C. Simpson, Algebraic aspects of higher nonabelian Hodge theory, Preprint math. AG 9902067. Zbl1051.14008MR1978713
- [22] B. Toen, Dualité de Tannaka supérieure I: Structures monoidales, MPI Bonn, Preprint June 10, 2000.
- [23] G. W. Whitehead, “Elements of homotopy theory”, Grad. Texts in Math. 61, Springer-Verlag, Berlin-Heidelberg-New York, 1978. Zbl0406.55001MR516508
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.