Geometric and categorical nonabelian duality in complex geometry

Siegmund Kosarew

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 4, page 769-797
  • ISSN: 0391-173X

Abstract

top
The Leitmotiv of this work is to find suitable notions of dual varieties in a general sense. We develop the basic elements of a duality theory for varieties and complex spaces, by adopting a geometric and a categorical point of view. One main feature is to prove a biduality property for each notion which is achieved in most cases.

How to cite

top

Kosarew, Siegmund. "Geometric and categorical nonabelian duality in complex geometry." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 769-797. <http://eudml.org/doc/84486>.

@article{Kosarew2002,
abstract = {The Leitmotiv of this work is to find suitable notions of dual varieties in a general sense. We develop the basic elements of a duality theory for varieties and complex spaces, by adopting a geometric and a categorical point of view. One main feature is to prove a biduality property for each notion which is achieved in most cases.},
author = {Kosarew, Siegmund},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {769-797},
publisher = {Scuola normale superiore},
title = {Geometric and categorical nonabelian duality in complex geometry},
url = {http://eudml.org/doc/84486},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Kosarew, Siegmund
TI - Geometric and categorical nonabelian duality in complex geometry
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 769
EP - 797
AB - The Leitmotiv of this work is to find suitable notions of dual varieties in a general sense. We develop the basic elements of a duality theory for varieties and complex spaces, by adopting a geometric and a categorical point of view. One main feature is to prove a biduality property for each notion which is achieved in most cases.
LA - eng
UR - http://eudml.org/doc/84486
ER -

References

top
  1. [1] J. F. Adams, “Stable homotopy and generalized homology”, The University of Chicago Press, Chicago, 1974. Zbl0309.55016MR402720
  2. [2] A. Altman – S. Kleiman, Compactifying the Picard Scheme, Adv. Math. 35 (1980), 50-112. Zbl0427.14015MR555258
  3. [3] V. Balaji – L. Brambila-Paz – P. Newstead, Stability of the Poincaré bundle, Math. Nachr. 188 (1997), 5-15. Zbl0907.14014MR1484665
  4. [4] A. Bondal – D. Orlov., Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), 327-344. Zbl0994.18007MR1818984
  5. [5] A. Bondal – D. Orlov, Semiorthogonal decomposition for algebraic varieties, MPI Bonn, Preprint 95-15. 
  6. [6] T. Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), 25-34. Zbl0937.18012MR1651025
  7. [7] I. Ciocan-Fontanine – M. M. Kapranov, Derived Quot schemes, Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), 403-440. Zbl1050.14042MR1839580
  8. [8] I. Ciocan-Fontanine – M. M. Kapranov, Derived Hilbert schemes, J. Amer. Math. Soc. 15 (2002), 787-815. Zbl1074.14003MR1915819
  9. [9] A. Dold – D. Puppe, Duality, trace and transfer, In: “Proc. Steklov Inst.” (4); Topology, A collection of papers, P. S. Alexandrov (ed.) (AMS translation), 1984, pp. 85-103. Zbl0556.55006MR733829
  10. [10] A. A. Kirillov, “Elements of the theory of representations”, Grundl. math. Wiss. 220, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0342.22001MR412321
  11. [11] S. Kosarew, Nonabelian duality on Stein spaces, Amer. J. Math. 120 (1998), 637-648. Zbl0911.32023MR1623408
  12. [12] S. Kosarew – C. Okonek, Global Moduli Spaces and Simple Holomorphic bundles, Publ. RIMS, Kyoto Univ. 25 (1989), 1-19. Zbl0679.32024MR999347
  13. [13] A. Maciocia, Generalized Fourier-Mukai transforms, J. Reine Angew. Math. 480 (1996), 197-211. Zbl0877.14014MR1420564
  14. [14] S. Mac Lane, “Categories for the Working Mathematician”, Grad. Texts in Math. 5, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0232.18001MR1712872
  15. [15] S. Mukai, On the moduli space of bundles on a K3-surface, In: “Vector Bundles on Algebraic Varieties” Bombay Coll.,1984, Tata Inst., Oxford University Press, 1987, pp. 341-413. Zbl0674.14023MR893604
  16. [16] M. S. Narasimhan – S. Ramanan, Deformations of the moduli spaces of vector bundles over an algebraic curve, Ann. Math. 101 (1975), 391-417. Zbl0314.14004MR384797
  17. [17] A. Rosenberg, “Noncommutative Algebraic Geometry and Representations of Quantized Algebras”, Kluwer Acad. Publ., Dordrecht-London-Boston, 1995. Zbl0839.16002MR1347919
  18. [18] C. S. Seshadri, “Fibrés vectoriels sur les courbes algébriques”, Astérisque 96 (1982). Zbl0517.14008
  19. [19] C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. IHES 79 (1994), 47-129. Zbl0891.14005MR1307297
  20. [20] C. Simpson, A closed model structure for n -categories, internal Hom , n -stacks and generalized Seifert-Van Kampen, Preprint math. AG 9704006. 
  21. [21] C. Simpson, Algebraic aspects of higher nonabelian Hodge theory, Preprint math. AG 9902067. Zbl1051.14008MR1978713
  22. [22] B. Toen, Dualité de Tannaka supérieure I: Structures monoidales, MPI Bonn, Preprint June 10, 2000. 
  23. [23] G. W. Whitehead, “Elements of homotopy theory”, Grad. Texts in Math. 61, Springer-Verlag, Berlin-Heidelberg-New York, 1978. Zbl0406.55001MR516508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.