On the variety of lagrangian subalgebras, I
Annales scientifiques de l'École Normale Supérieure (2001)
- Volume: 34, Issue: 5, page 631-668
- ISSN: 0012-9593
Access Full Article
topHow to cite
topEvens, Sam, and Lu, Jiang-Hua. "On the variety of lagrangian subalgebras, I." Annales scientifiques de l'École Normale Supérieure 34.5 (2001): 631-668. <http://eudml.org/doc/82553>.
@article{Evens2001,
author = {Evens, Sam, Lu, Jiang-Hua},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {5},
pages = {631-668},
publisher = {Elsevier},
title = {On the variety of lagrangian subalgebras, I},
url = {http://eudml.org/doc/82553},
volume = {34},
year = {2001},
}
TY - JOUR
AU - Evens, Sam
AU - Lu, Jiang-Hua
TI - On the variety of lagrangian subalgebras, I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 5
SP - 631
EP - 668
LA - eng
UR - http://eudml.org/doc/82553
ER -
References
top- [1] Adams J., Barbasch D., Vogan D., The Langlands Classification and Irreducible Characters for Real Reductive Groups, Birkhäuser, 1992. Zbl0756.22004MR1162533
- [2] Arbarello E., Cornalba M., Griffiths P., Harris J., Geometry of Algebraic Curves, Vol. 1, Springer-Verlag, 1985. Zbl0559.14017MR770932
- [3] Borel A., de Siebenthal J., Les sous-groupes fermes de rang maximum des groupes de Lie clos, Comment. Math. Helv.23 (1949) 200-221. Zbl0034.30701MR32659
- [4] De Concini C., Procesi C., Complete symmetric varieties, in: Invariant Theory (Montecatini, 1982), Lect. Notes in Math., 996, Springer, Berlin, New York, 1983, pp. 1-44. Zbl0581.14041MR718125
- [5] Delorme P., Classification des triples de Manin pour les algèbres de Lie réductives complexes, math.QA/0003123.
- [6] Drinfeld V.G., On Poisson homogeneous spaces of Poisson–Lie groups, Theor. Math. Phys.95 (2) (1993) 226-227. Zbl0852.22018
- [7] Evens S., Lu J.-H., Poisson harmonic forms, Kostant harmonic forms, and the S1-equivariant cohomology of K/T, Adv. Math.142 (1999) 171-220. Zbl0914.22009MR1680047
- [8] Etingof P., Varchenko A., Geometry and classification of solutions of the classical dynamical Yang–Baxter equation, Comm. Math. Phys.192 (1998) 177-220. Zbl0915.17018
- [9] Hartshorne R., Algebraic Geometry, Springer-Verlag, 1977. Zbl0367.14001MR463157
- [10] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978. Zbl0451.53038MR514561
- [11] Humphreys J., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972. Zbl0254.17004MR323842
- [12] Karolinsky E., The classification of Poisson homogeneous spaces of compact Poisson Lie groups, Mathematical Physics, Analysis, and Geometry3 (3/4) (1996) 274-289, (in Russian).
- [13] Karolinsky E., A classification of Poisson homogeneous spaces of complex reductive Poisson–Lie groups, Banach Center Publ., 51, Polish Academy of Sciences, Warsaw, 2000. Zbl0981.53078
- [14] Korogodski L., Soibelman Y., Algebras of Functions on Quantum Groups, Part I, Mathematical Surveys and Monographs, 56, American Mathematical Society, 1998. Zbl0923.17017MR1614943
- [15] Kostant B., Lie algebra cohomology and generalized Schubert cells, Ann. of Math.77 (1) (1963) 72-144. Zbl0134.03503MR142697
- [16] Kostant B., Kumar S., The nil Hecke ring and cohomology of G/P for a Kac–Moody group G, Adv. Math.62 (3) (1986) 187-237. Zbl0641.17008
- [17] Lu J.-H., Weinstein A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom.31 (1990) 501-526. Zbl0673.58018MR1037412
- [18] Lu J.-H., Multiplicative and affine Poisson structures on Lie groups, PhD thesis, University of California, Berkeley, 1990.
- [19] Lu J.-H., Poisson homogeneous spaces and Lie algebroids associated to Poisson actions, Duke Math. J.86 (2) (1997) 261-304. Zbl0889.58036MR1430434
- [20] Lu J.-H., Coordinates on Schubert cells, Kostant's harmonic forms, and the Bruhat Poisson structure on G/B, Trans. Groups4 (4) (1999) 355-374. Zbl0938.22012MR1726697
- [21] Lu J.-H., Classical dynamical r-matrices and homogeneous Poisson structures on G/H and on K/T, Comm. Math. Phys.212 (2000) 337-370. Zbl1008.53064MR1772250
- [22] Onishchik A.L., Vinberg E.B. (Eds.), Structure of Lie Groups and Lie Algebras, Lie Groups and Lie Algebras III, Encyclopaedia of Mathematical Sciences, 41, Springer-Verlag, Berlin, 1994. Zbl0797.22001MR1349140
- [23] Oshima T., Sekiguchi J., Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math.57 (1980) 1-81. Zbl0434.58020MR564184
- [24] Panov A., Manin triples of real simple Lie algebras, part 1, available as math.QA/9904156.
- [25] Panov A., Manin triples of real simple Lie algebras, part 2, available as math.QA/9905028.
- [26] Porteous I., Clifford Algebras and the Classical Groups, Cambridge University Press, 1995. Zbl0855.15019MR1369094
- [27] Rossman W., The structure of semi-simple symmetric spaces, Canadian Math. J.31 (1979) 157-180.
- [28] Schiffmann O., On classification of dynamical r-matrices, Math. Res. Lett.5 (1998) 13-31. Zbl0957.17020MR1618367
- [29] Schlichtkrull H., Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhäuser, 1984. Zbl0555.43002MR757178
- [30] Silhol R., Real Algebraic Surfaces, Lect. Notes in Math., 1392, Springer-Verlag, 1989. Zbl0691.14010MR1015720
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.