On the variety of lagrangian subalgebras, I

Sam Evens; Jiang-Hua Lu

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 5, page 631-668
  • ISSN: 0012-9593

How to cite

top

Evens, Sam, and Lu, Jiang-Hua. "On the variety of lagrangian subalgebras, I." Annales scientifiques de l'École Normale Supérieure 34.5 (2001): 631-668. <http://eudml.org/doc/82553>.

@article{Evens2001,
author = {Evens, Sam, Lu, Jiang-Hua},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {5},
pages = {631-668},
publisher = {Elsevier},
title = {On the variety of lagrangian subalgebras, I},
url = {http://eudml.org/doc/82553},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Evens, Sam
AU - Lu, Jiang-Hua
TI - On the variety of lagrangian subalgebras, I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 5
SP - 631
EP - 668
LA - eng
UR - http://eudml.org/doc/82553
ER -

References

top
  1. [1] Adams J., Barbasch D., Vogan D., The Langlands Classification and Irreducible Characters for Real Reductive Groups, Birkhäuser, 1992. Zbl0756.22004MR1162533
  2. [2] Arbarello E., Cornalba M., Griffiths P., Harris J., Geometry of Algebraic Curves, Vol. 1, Springer-Verlag, 1985. Zbl0559.14017MR770932
  3. [3] Borel A., de Siebenthal J., Les sous-groupes fermes de rang maximum des groupes de Lie clos, Comment. Math. Helv.23 (1949) 200-221. Zbl0034.30701MR32659
  4. [4] De Concini C., Procesi C., Complete symmetric varieties, in: Invariant Theory (Montecatini, 1982), Lect. Notes in Math., 996, Springer, Berlin, New York, 1983, pp. 1-44. Zbl0581.14041MR718125
  5. [5] Delorme P., Classification des triples de Manin pour les algèbres de Lie réductives complexes, math.QA/0003123. 
  6. [6] Drinfeld V.G., On Poisson homogeneous spaces of Poisson–Lie groups, Theor. Math. Phys.95 (2) (1993) 226-227. Zbl0852.22018
  7. [7] Evens S., Lu J.-H., Poisson harmonic forms, Kostant harmonic forms, and the S1-equivariant cohomology of K/T, Adv. Math.142 (1999) 171-220. Zbl0914.22009MR1680047
  8. [8] Etingof P., Varchenko A., Geometry and classification of solutions of the classical dynamical Yang–Baxter equation, Comm. Math. Phys.192 (1998) 177-220. Zbl0915.17018
  9. [9] Hartshorne R., Algebraic Geometry, Springer-Verlag, 1977. Zbl0367.14001MR463157
  10. [10] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978. Zbl0451.53038MR514561
  11. [11] Humphreys J., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972. Zbl0254.17004MR323842
  12. [12] Karolinsky E., The classification of Poisson homogeneous spaces of compact Poisson Lie groups, Mathematical Physics, Analysis, and Geometry3 (3/4) (1996) 274-289, (in Russian). 
  13. [13] Karolinsky E., A classification of Poisson homogeneous spaces of complex reductive Poisson–Lie groups, Banach Center Publ., 51, Polish Academy of Sciences, Warsaw, 2000. Zbl0981.53078
  14. [14] Korogodski L., Soibelman Y., Algebras of Functions on Quantum Groups, Part I, Mathematical Surveys and Monographs, 56, American Mathematical Society, 1998. Zbl0923.17017MR1614943
  15. [15] Kostant B., Lie algebra cohomology and generalized Schubert cells, Ann. of Math.77 (1) (1963) 72-144. Zbl0134.03503MR142697
  16. [16] Kostant B., Kumar S., The nil Hecke ring and cohomology of G/P for a Kac–Moody group G, Adv. Math.62 (3) (1986) 187-237. Zbl0641.17008
  17. [17] Lu J.-H., Weinstein A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom.31 (1990) 501-526. Zbl0673.58018MR1037412
  18. [18] Lu J.-H., Multiplicative and affine Poisson structures on Lie groups, PhD thesis, University of California, Berkeley, 1990. 
  19. [19] Lu J.-H., Poisson homogeneous spaces and Lie algebroids associated to Poisson actions, Duke Math. J.86 (2) (1997) 261-304. Zbl0889.58036MR1430434
  20. [20] Lu J.-H., Coordinates on Schubert cells, Kostant's harmonic forms, and the Bruhat Poisson structure on G/B, Trans. Groups4 (4) (1999) 355-374. Zbl0938.22012MR1726697
  21. [21] Lu J.-H., Classical dynamical r-matrices and homogeneous Poisson structures on G/H and on K/T, Comm. Math. Phys.212 (2000) 337-370. Zbl1008.53064MR1772250
  22. [22] Onishchik A.L., Vinberg E.B. (Eds.), Structure of Lie Groups and Lie Algebras, Lie Groups and Lie Algebras III, Encyclopaedia of Mathematical Sciences, 41, Springer-Verlag, Berlin, 1994. Zbl0797.22001MR1349140
  23. [23] Oshima T., Sekiguchi J., Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math.57 (1980) 1-81. Zbl0434.58020MR564184
  24. [24] Panov A., Manin triples of real simple Lie algebras, part 1, available as math.QA/9904156. 
  25. [25] Panov A., Manin triples of real simple Lie algebras, part 2, available as math.QA/9905028. 
  26. [26] Porteous I., Clifford Algebras and the Classical Groups, Cambridge University Press, 1995. Zbl0855.15019MR1369094
  27. [27] Rossman W., The structure of semi-simple symmetric spaces, Canadian Math. J.31 (1979) 157-180. 
  28. [28] Schiffmann O., On classification of dynamical r-matrices, Math. Res. Lett.5 (1998) 13-31. Zbl0957.17020MR1618367
  29. [29] Schlichtkrull H., Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhäuser, 1984. Zbl0555.43002MR757178
  30. [30] Silhol R., Real Algebraic Surfaces, Lect. Notes in Math., 1392, Springer-Verlag, 1989. Zbl0691.14010MR1015720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.