A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups
Banach Center Publications (2000)
- Volume: 51, Issue: 1, page 103-108
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. A. Belavin and V. G. Drinfeld, Triangle equations and simple Lie algebras, in: Soviet Scientific Reviews, Section C 4, 1984, 93-165 (2nd edition: Classic Reviews in Mathematics and Mathematical Physics 1, Harwood, Amsterdam, 1998). Zbl0553.58040
- [2] N. Bourbaki, Groupes et algèbres de Lie, ch. 4-6, Hermann, Paris, 1968.
- [3] V. G. Drinfeld, On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys. 95 (1993), 226-227.
- [4] V. G. Drinfeld, Quantum Groups, in: Proceedings of the International Congress of Mathematicians, 1986, Berkeley, 1987, 798-820.
- [5] V. V. Gorbatsevich, A. L. Onishchik and E. B. Vinberg, Structure of Lie groups and Lie algebras, Encyclopaedia of Math. Sci. 41, Springer-Verlag, Berlin, 1994. Zbl0797.22001
- [6] E. A. Karolinsky, A classification of Poisson homogeneous spaces of a compact Poisson-Lie group, Mathematical Physics, Analysis, and Geometry 3 (1996), 274-289 (in Russian).
- [7] L.-C. Li and S. Parmentier, Nonlinear Poisson structures and r-matrices, Commun. Math. Phys. 125 (1989), 545-563. Zbl0695.58011
- [8] J.-H. Lu, Classical dynamical r-matrices and homogeneous Poisson structures on G/H and K/T, math. SG/9909004.
- [9] A. L. Onishchik and E. B. Vinberg, Lie groups and algebraic groups, Springer-Verlag, Berlin, 1990. Zbl0722.22004
- [10] S. Parmentier, Twisted affine Poisson structures, decomposition of Lie algebras, and the Classical Yang-Baxter equation, preprint MPI/91-82, Max-Planck-Institut für Mathematik, Bonn, 1991.