On the variety of lagrangian subalgebras, II

Sam Evens; Jiang-Hua Lu

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 2, page 347-379
  • ISSN: 0012-9593

How to cite

top

Evens, Sam, and Lu, Jiang-Hua. "On the variety of lagrangian subalgebras, II." Annales scientifiques de l'École Normale Supérieure 39.2 (2006): 347-379. <http://eudml.org/doc/82688>.

@article{Evens2006,
author = {Evens, Sam, Lu, Jiang-Hua},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {347-379},
publisher = {Elsevier},
title = {On the variety of lagrangian subalgebras, II},
url = {http://eudml.org/doc/82688},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Evens, Sam
AU - Lu, Jiang-Hua
TI - On the variety of lagrangian subalgebras, II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 2
SP - 347
EP - 379
LA - eng
UR - http://eudml.org/doc/82688
ER -

References

top
  1. [1] Arbarello E., Cornalba M., Griffiths P., Harris J., Geometry of Algebraic Curves, vol. 1, Springer, Berlin, 1985. Zbl0559.14017MR770932
  2. [2] Bédard R., On the Brauer liftings for modular representations, J. Algebra93 (1985) 332-353. Zbl0607.20024MR786758
  3. [3] Belavin A., Drinfeld V., Triangular equations and simple Lie algebras, Math. Phys. Rev.4 (1984) 93-165. Zbl0553.58040MR768939
  4. [4] Carter R., Finite Groups of Lie Type, Conjugacy Classes and Complex Characters, John Wiley & Sons, New York, 1993. Zbl0567.20023MR1266626
  5. [5] De Concini C., Procesi C., Complete symmetric varieties, in: Invariant Theory, Montecatini, 1982, Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1-44. Zbl0581.14041MR718125
  6. [6] Delorme P., Classification des triples de Manin pour les algèbres de Lie réductives complexes, with an appendix by Guillaume and Macey, J. Algebra246 (2001) 97-174. Zbl1076.17006MR1872615
  7. [7] Drinfeld V.G., On Poisson homogeneous spaces of Poisson–Lie groups, Theoret. Math. Phys.95 (2) (1993) 226-227. Zbl0852.22018MR1243249
  8. [8] Evens S., Lu J.-H., Poisson harmonic forms, Kostant harmonic forms, and the S 1 -equivariant cohomology of K / T , Adv. Math.142 (1999) 171-220. Zbl0914.22009MR1680047
  9. [9] Evens S., Lu J.-H., On the variety of Lagrangian subalgebras, I, Ann. École Norm. Sup.34 (2001) 631-668. Zbl1098.17006MR1862022
  10. [10] Fomin S., Zelevinsky A., Double Bruhat cells and total positivity, J. Amer. Math. Soc.12 (2) (1999) 335-380. Zbl0913.22011MR1652878
  11. [11] Foth P., Lu J.-H., On a Poisson structure on compact symmetric spaces, Comm. Math. Phys.251 (3) (2004) 557-566. Zbl1067.53062MR2102330
  12. [12] Harris J., Algebraic Geometry, Springer, Berlin, 1995. Zbl0779.14001
  13. [13] Hartshorne R., Algebraic Geometry, Springer, Berlin, 1977. Zbl0367.14001MR463157
  14. [14] Humphreys J., Linear Algebraic Groups, Springer, Berlin, 1981. Zbl0471.20029
  15. [15] Karolinsky E., A Classification of Poisson Homogeneous Spaces of Complex Reductive Poisson–Lie Groups, Banach Center Publ., vol. 51, Polish Acad. Sci., Warsaw, 2000. Zbl0981.53078MR1764438
  16. [16] Karolinsky E., Stolin A., Classical dynamical r-matrices, Poisson homogeneous spaces, and Lagrangian subalgebras, Lett. Math. Phys.60 (2002) 257-274. Zbl1006.17019MR1917136
  17. [17] Knapp A., Lie Groups Beyond an Introduction, Progr. Math., vol. 140, Birkhäuser, Basel, 1996. Zbl0862.22006MR1399083
  18. [18] Kogan M., Zelevinsky A., On symplectic leaves and integrable systems in standard complex semi-simple Poisson–Lie groups, Int. Math. Res. Not.32 (2002) 1685-1702. Zbl1006.22015MR1916837
  19. [19] Korogodski L., Soibelman Y., Algebras of Functions on Quantum Groups, Part I, Math. Surveys Monographs, vol. 56, AMS, Providence, RI, 1998. Zbl0923.17017MR1614943
  20. [20] Kostant B., Lie algebra cohomology and generalized Schubert cells, Ann. of Math.77 (1) (1963) 72-144. Zbl0134.03503MR142697
  21. [21] Kostant B., Kumar S., The nil Hecke ring and cohomology of G / P for a Kac–Moody groupG, Adv. Math.62 (3) (1986) 187-237. Zbl0641.17008MR866159
  22. [22] Lu J.-H., Coordinates on Schubert cells, Kostant’s harmonic forms, and the Bruhat Poisson structure on G / B , Trans. Groups4 (4) (1998) 355-374. Zbl0938.22012MR1726697
  23. [23] Lu J.-H., Classical dynamical r-matrices and homogeneous Poisson structures on G / H and on K / T , Comm. Math. Phys.212 (2000) 337-370. Zbl1008.53064MR1772250
  24. [24] Lu J.-H., Yakimov M., On a class of double cosets in reductive algebraic groups, Int. Math. Res. Not.13 (2005) 761-797. Zbl1066.22019MR2144990
  25. [25] Lu J.-H., Yakimov M., Group orbits and regular decompositions of Poisson manifolds, in preparation. 
  26. [26] Lusztig G., Parabolic character sheaves I, Moscow Math. J.4 (2004) 153-179. Zbl1102.20030MR2074987
  27. [27] Lusztig G., Parabolic character sheaves II, Moscow Math. J.4 (2004) 869-896. Zbl1103.20041MR2124170
  28. [28] Schiffmann O., On classification of dynamical r-matrices, Math. Res. Lett.5 (1998) 13-31. Zbl0957.17020MR1618367
  29. [29] Slodowy P., Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math., vol. 815, Springer, Berlin, 1980. Zbl0441.14002MR584445
  30. [30] Steinberg R., Conjugacy Classes in Algebraic Groups, Lecture Notes in Math., vol. 366, Springer, Berlin, 1974. Zbl0281.20037MR352279
  31. [31] Springer T., Intersection cohomology of ( B × B ) -orbit closures in group compactifications, J. Algebra258 (1) (2002) 71-111. Zbl1110.14047MR1958898
  32. [32] Winter D., Algebraic group automorphisms having finite fixed point sets, Proc. Amer. Math. Soc.18 (1967) 371-377. Zbl0153.04601MR210715
  33. [33] Yakimov M., Symplectic leaves of complex reductive Poisson Lie groups, Duke Math. J.112 (3) (2002) 453-509. Zbl1031.17012MR1896471
  34. [34] Zelevinsky A., Connected components of real double Bruhat cells, Int. Math. Res. Not.21 (2000) 1131-1154. Zbl0978.20021MR1800992

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.