On the variety of lagrangian subalgebras, II
Annales scientifiques de l'École Normale Supérieure (2006)
- Volume: 39, Issue: 2, page 347-379
- ISSN: 0012-9593
Access Full Article
topHow to cite
topEvens, Sam, and Lu, Jiang-Hua. "On the variety of lagrangian subalgebras, II." Annales scientifiques de l'École Normale Supérieure 39.2 (2006): 347-379. <http://eudml.org/doc/82688>.
@article{Evens2006,
author = {Evens, Sam, Lu, Jiang-Hua},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {347-379},
publisher = {Elsevier},
title = {On the variety of lagrangian subalgebras, II},
url = {http://eudml.org/doc/82688},
volume = {39},
year = {2006},
}
TY - JOUR
AU - Evens, Sam
AU - Lu, Jiang-Hua
TI - On the variety of lagrangian subalgebras, II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 2
SP - 347
EP - 379
LA - eng
UR - http://eudml.org/doc/82688
ER -
References
top- [1] Arbarello E., Cornalba M., Griffiths P., Harris J., Geometry of Algebraic Curves, vol. 1, Springer, Berlin, 1985. Zbl0559.14017MR770932
- [2] Bédard R., On the Brauer liftings for modular representations, J. Algebra93 (1985) 332-353. Zbl0607.20024MR786758
- [3] Belavin A., Drinfeld V., Triangular equations and simple Lie algebras, Math. Phys. Rev.4 (1984) 93-165. Zbl0553.58040MR768939
- [4] Carter R., Finite Groups of Lie Type, Conjugacy Classes and Complex Characters, John Wiley & Sons, New York, 1993. Zbl0567.20023MR1266626
- [5] De Concini C., Procesi C., Complete symmetric varieties, in: Invariant Theory, Montecatini, 1982, Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1-44. Zbl0581.14041MR718125
- [6] Delorme P., Classification des triples de Manin pour les algèbres de Lie réductives complexes, with an appendix by Guillaume and Macey, J. Algebra246 (2001) 97-174. Zbl1076.17006MR1872615
- [7] Drinfeld V.G., On Poisson homogeneous spaces of Poisson–Lie groups, Theoret. Math. Phys.95 (2) (1993) 226-227. Zbl0852.22018MR1243249
- [8] Evens S., Lu J.-H., Poisson harmonic forms, Kostant harmonic forms, and the -equivariant cohomology of , Adv. Math.142 (1999) 171-220. Zbl0914.22009MR1680047
- [9] Evens S., Lu J.-H., On the variety of Lagrangian subalgebras, I, Ann. École Norm. Sup.34 (2001) 631-668. Zbl1098.17006MR1862022
- [10] Fomin S., Zelevinsky A., Double Bruhat cells and total positivity, J. Amer. Math. Soc.12 (2) (1999) 335-380. Zbl0913.22011MR1652878
- [11] Foth P., Lu J.-H., On a Poisson structure on compact symmetric spaces, Comm. Math. Phys.251 (3) (2004) 557-566. Zbl1067.53062MR2102330
- [12] Harris J., Algebraic Geometry, Springer, Berlin, 1995. Zbl0779.14001
- [13] Hartshorne R., Algebraic Geometry, Springer, Berlin, 1977. Zbl0367.14001MR463157
- [14] Humphreys J., Linear Algebraic Groups, Springer, Berlin, 1981. Zbl0471.20029
- [15] Karolinsky E., A Classification of Poisson Homogeneous Spaces of Complex Reductive Poisson–Lie Groups, Banach Center Publ., vol. 51, Polish Acad. Sci., Warsaw, 2000. Zbl0981.53078MR1764438
- [16] Karolinsky E., Stolin A., Classical dynamical r-matrices, Poisson homogeneous spaces, and Lagrangian subalgebras, Lett. Math. Phys.60 (2002) 257-274. Zbl1006.17019MR1917136
- [17] Knapp A., Lie Groups Beyond an Introduction, Progr. Math., vol. 140, Birkhäuser, Basel, 1996. Zbl0862.22006MR1399083
- [18] Kogan M., Zelevinsky A., On symplectic leaves and integrable systems in standard complex semi-simple Poisson–Lie groups, Int. Math. Res. Not.32 (2002) 1685-1702. Zbl1006.22015MR1916837
- [19] Korogodski L., Soibelman Y., Algebras of Functions on Quantum Groups, Part I, Math. Surveys Monographs, vol. 56, AMS, Providence, RI, 1998. Zbl0923.17017MR1614943
- [20] Kostant B., Lie algebra cohomology and generalized Schubert cells, Ann. of Math.77 (1) (1963) 72-144. Zbl0134.03503MR142697
- [21] Kostant B., Kumar S., The nil Hecke ring and cohomology of for a Kac–Moody groupG, Adv. Math.62 (3) (1986) 187-237. Zbl0641.17008MR866159
- [22] Lu J.-H., Coordinates on Schubert cells, Kostant’s harmonic forms, and the Bruhat Poisson structure on , Trans. Groups4 (4) (1998) 355-374. Zbl0938.22012MR1726697
- [23] Lu J.-H., Classical dynamical r-matrices and homogeneous Poisson structures on and on , Comm. Math. Phys.212 (2000) 337-370. Zbl1008.53064MR1772250
- [24] Lu J.-H., Yakimov M., On a class of double cosets in reductive algebraic groups, Int. Math. Res. Not.13 (2005) 761-797. Zbl1066.22019MR2144990
- [25] Lu J.-H., Yakimov M., Group orbits and regular decompositions of Poisson manifolds, in preparation.
- [26] Lusztig G., Parabolic character sheaves I, Moscow Math. J.4 (2004) 153-179. Zbl1102.20030MR2074987
- [27] Lusztig G., Parabolic character sheaves II, Moscow Math. J.4 (2004) 869-896. Zbl1103.20041MR2124170
- [28] Schiffmann O., On classification of dynamical r-matrices, Math. Res. Lett.5 (1998) 13-31. Zbl0957.17020MR1618367
- [29] Slodowy P., Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math., vol. 815, Springer, Berlin, 1980. Zbl0441.14002MR584445
- [30] Steinberg R., Conjugacy Classes in Algebraic Groups, Lecture Notes in Math., vol. 366, Springer, Berlin, 1974. Zbl0281.20037MR352279
- [31] Springer T., Intersection cohomology of -orbit closures in group compactifications, J. Algebra258 (1) (2002) 71-111. Zbl1110.14047MR1958898
- [32] Winter D., Algebraic group automorphisms having finite fixed point sets, Proc. Amer. Math. Soc.18 (1967) 371-377. Zbl0153.04601MR210715
- [33] Yakimov M., Symplectic leaves of complex reductive Poisson Lie groups, Duke Math. J.112 (3) (2002) 453-509. Zbl1031.17012MR1896471
- [34] Zelevinsky A., Connected components of real double Bruhat cells, Int. Math. Res. Not.21 (2000) 1131-1154. Zbl0978.20021MR1800992
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.