Quadratic forms and algebraic cycles
Séminaire Bourbaki (2004-2005)
- Volume: 47, page 113-164
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topKahn, Bruno. "Formes quadratiques et cycles algébriques." Séminaire Bourbaki 47 (2004-2005): 113-164. <http://eudml.org/doc/252159>.
@article{Kahn2004-2005,
abstract = {Introduite par Witt en 1937, la théorie des formes quadratiques sur un corps joue un rôle central dans la démonstration des conjectures de Milnor par Voevodsky via les travaux pionniers de Rost qui y interviennent. Réciproquement, les méthodes de Rost et Voevodsky utilisant la théorie des motifs et les opérations de Steenrod motiviques révolutionnent la théorie des formes quadratiques et ont conduit à la démonstration de résultats de base qui semblaient auparavant inaccessibles. On expliquera notamment comment ces méthodes permettent de démontrer que, si $q$ est une forme quadratique anisotrope dans $I^n$ (puissance $n$-ième de l’idéal d’augmentation de l’anneau de Witt) et que $\dim q<2^\{n+1\}$, alors $\dim q$ est de la forme $2^\{n+1\}-2^i$ pour un entier $i\in \lbrace 0,\dots ,n\rbrace $.},
author = {Kahn, Bruno},
journal = {Séminaire Bourbaki},
keywords = {quadratic forms; algebraic cycles; motives},
language = {fre},
pages = {113-164},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Formes quadratiques et cycles algébriques},
url = {http://eudml.org/doc/252159},
volume = {47},
year = {2004-2005},
}
TY - JOUR
AU - Kahn, Bruno
TI - Formes quadratiques et cycles algébriques
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 113
EP - 164
AB - Introduite par Witt en 1937, la théorie des formes quadratiques sur un corps joue un rôle central dans la démonstration des conjectures de Milnor par Voevodsky via les travaux pionniers de Rost qui y interviennent. Réciproquement, les méthodes de Rost et Voevodsky utilisant la théorie des motifs et les opérations de Steenrod motiviques révolutionnent la théorie des formes quadratiques et ont conduit à la démonstration de résultats de base qui semblaient auparavant inaccessibles. On expliquera notamment comment ces méthodes permettent de démontrer que, si $q$ est une forme quadratique anisotrope dans $I^n$ (puissance $n$-ième de l’idéal d’augmentation de l’anneau de Witt) et que $\dim q<2^{n+1}$, alors $\dim q$ est de la forme $2^{n+1}-2^i$ pour un entier $i\in \lbrace 0,\dots ,n\rbrace $.
LA - fre
KW - quadratic forms; algebraic cycles; motives
UR - http://eudml.org/doc/252159
ER -
References
top- [1] Y. André – “Motifs de dimension finie (d’après Kimura, O’Sullivan...)”, in Séminaire Bourbaki (2003/04), Astérisque, vol. 299, Paris, 2005, Exp. 929, p. 115–145. Zbl1080.14010MR2167204
- [2] Y. André & B. Kahn – “Nilpotence, radicaux et structures monoïdales (avec un appendice de P. O’Sullivan)”, Rend. Sem. Mat. Univ. Padova108 (2002), p. 107–291. Zbl1165.18300MR1956434
- [3] —, “Erratum : Nilpotence, radicaux et structures monoïdales”, Rend. Sem. Mat. Univ. Padova113 (2005), p. 125–128. Zbl1167.18302MR2168984
- [4] J. Kr. Arason – “Cohomologische Invarianten quadratischer Formen”, J. Algebra36 (1975), p. 448–491. Zbl0314.12104MR389761
- [5] J. Kr. Arason & M. Knebusch – “Über die Grade quadratischer Formen”, Math. Ann.234 (1978), p. 167–192. Zbl0362.10021MR506027
- [6] J. Kr. Arason & A. Pfister – “Beweis des Krullschen Durchschnittsatzes für den Wittring”, Invent. Math.12 (1971), p. 173–176. Zbl0212.37302MR294251
- [7] P. Balmer – “Witt cohomology, Mayer-Vietoris, Homotopy invariance and the Gersten Conjecture”, -Theory 23 (2001), p. 15–30. Zbl0987.19002MR1852452
- [8] P. Balmer & C. Walter – “A Gersten-Witt spectral sequence for regular schemes”, Ann. scient. Éc. Norm. Sup. série 35 (2002), p. 127–152. Zbl1012.19003MR1886007
- [9] A. Borel – Linear algebraic groups, 2e ’ed., Springer, 1991. Zbl0726.20030MR1102012
- [10] P. Brosnan – “A short proof of Rost nilpotence via refined correspondences”, 8 (2003), p. 69–78. Zbl1044.11017MR2029161
- [11] —, “Steenrod operations in Chow theory”, Trans. Amer. Math. Soc.355 (2003), p. 1869–1903. Zbl1045.55005MR1953530
- [12] V. Chernousov, S. Gille & A. Merkurjev – “Motivic decomposition of isotropic projective homogeneous varieties”, Duke Math. J.126 (2005), p. 137–159. Zbl1086.14041MR2110630
- [13] C. Chevalley – “Sur les décompositions cellulaires des espaces ”, in Algebraic groups and their generalizations : classical methods, Proc. Sympos. Pure Math., vol. 56 (I), Providence, RI, 1994, p. 1–23. Zbl0824.14042MR1278698
- [14] M. Demazure – “Motifs de variétés algébriques”, in Séminaire Bourbaki (1969/70), Lect. Notes in Math., vol. 180, Springer, 1971, Exp. 365, p. 19–38. Zbl0247.14004
- [15] L.E. Dickson – “On quadratic forms in a general field”, 14 (1907), p. 108–115, Math. papers IV, Chelsea, 1975, p. 512-519. Zbl38.0182.02MR1558550JFM38.0182.02
- [16] D. Edidin & W. Graham – “Equivariant intersection theory”, Invent. Math.131 (1998), p. 595–634. Zbl0940.14003MR1614555
- [17] R.W. Fitzgerald – “Function fields of quadratic forms”, Math. Z.178 (1981), p. 63–76. Zbl0442.10013MR627094
- [18] E. Friedlander – “Motivic complexes of Suslin-Voevodsky”, in Séminaire Bourbaki (1996/97), Astérisque, vol. 245, Paris, 1997, Exp. 833, p. 355–378. Zbl0908.19005MR1627118
- [19] W. Fulton – Intersection theory, 2e ’ed., Springer, 1984, 1998. Zbl0885.14002MR1644323
- [20] D.K. Harrison – “A Grothendieck ring of higher degree forms”, J. Algebra35 (1975), p. 123–138. Zbl0309.15016MR379370
- [21] D.W. Hoffmann – “Isotropy of quadratic forms over the function field of a quadric”, Math. Z.220 (1995), p. 461–476. Zbl0840.11017MR1362256
- [22] —, “Splitting patterns and invariants of quadratic forms”, Math. Nachr.190 (1998), p. 149–168. Zbl0916.11022MR1611608
- [23] J. Hurrelbrink & U. Rehmann – “Splitting patterns of quadratic forms”, Math. Nachr.176 (1995), p. 111–127. Zbl0876.11017MR1361129
- [24] O. Izhboldin – “Motivic equivalence of quadratic forms”, 3 (1998), p. 341–351. Zbl0957.11019MR1668530
- [25] —, “Fields of -invariant ”, Ann. of Math. (2) 154 (2001), p. 529–587. Zbl0998.11015MR1884616
- [26] O. Izhboldin & A. Vishik – “Quadratic forms with absolutely maximal splitting”, in Quadratic forms and their applications (Dublin, 1999), Contemp. Math., vol. 272, Providence, RI, 2000, p. 103–125. Zbl0972.11017MR1803363
- [27] U. Jannsen – “Motives, numerical equivalence and semi-simplicity”, Invent. Math.107 (1992), p. 447–452. Zbl0762.14003MR1150598
- [28] B. Kahn – “The total Stiefel-Whitney class of a regular representation”, J. Algebra144 (1991), p. 214–247. Zbl0777.20019MR1136904
- [29] —, “Formes quadratiques de hauteur et de degré ”, Indag. Math.7 (1996), p. 47–66. Zbl0866.11030MR1621344
- [30] —, “La conjecture de Milnor, d’après V. Voevodsky”, in Séminaire Bourbaki (1996/97), Astérisque, vol. 245, Paris, 1997, Exp. 834, p. 379–418. Zbl0916.19001
- [31] B. Kahn, M. Rost & R. Sujatha – “Unramified cohomology of quadrics, I”, Amer. J. Math.120 (1998), p. 841–891. Zbl0913.11018MR1637963
- [32] N. Karpenko – “A relation between higher Witt indices”, Trans. Amer. Math. Soc., à paraître. Zbl1148.11017MR2279306
- [33] —, “Invariants algébro-géométriques de formes quadratiques”, Algebra i Analiz 2 (1990), p. 141–162, en russe ; traduction anglaise : Leningrad Math. J. 2 (1991), p. 119-138.
- [34] —, “Isotropie d’espaces cellulaires relatifs et de variétés de drapeaux isotropes”, Algebra i Analiz 12 (2000), p. 3–69, en russe ; traduction anglaise : St. Petersburg Math. J. 12 (2001), p. 1-50.
- [35] —, “On the anisotropy of orthogonal involutions”, 15 (2000), p. 1–22. Zbl0962.16015MR1751923
- [36] —, “Characterization of minimal Pfister neighbors by Rost projectors”, J. Pure Appl. Algebra160 (2001), p. 195–227. Zbl0998.11016MR1836000
- [37] —, “On the first Witt index of quadratic forms”, Invent. Math.153 (2003), p. 455–462. Zbl1032.11016MR1992018
- [38] —, “Holes in ”, Ann. scient. Éc. Norm. Sup. série 37 (2004), p. 973–1002. Zbl1108.11037MR2119244
- [39] N. Karpenko & A. Merkurjev – “Rost projectors and Steenrod operations”, 7 (2002), p. 481–493. Zbl1030.11013MR2015051
- [40] —, “Essential dimension of quadrics”, Invent. Math.153 (2003), p. 361–372. Zbl1032.11015MR1992016
- [41] I. Kersten & U. Rehmann – “Generic splitting of reductive groups”, 46 (1994), p. 35–70. Zbl0805.20034MR1256727
- [42] M. Knebusch – “Specialization of quadratic and symmetric bilinear forms, and a norm theorem”, Acta Arith.24 (1973), p. 279–299. Zbl0287.15010MR349582
- [43] —, “Generic splitting of quadratic forms, I”, Proc. London Math. Soc. (3) 33 (1976), p. 65–93. Zbl0351.15016MR412101
- [44] —, “Generic splitting of quadratic forms, II”, Proc. London Math. Soc. (3) 34 (1977), p. 1–31. Zbl0359.15013MR427345
- [45] T.Y. Lam – Introduction to quadratic forms over fields, Graduate Studies in Math., vol. 67, American Mathematical Society, Providence, 2005. Zbl1068.11023MR2104929
- [46] F. Loeser – “Cobordisme de variétés algébriques (d’après M. Levine et F. Morel)”, in Séminaire Bourbaki (2001/02), Astérisque, vol. 290, Paris, 2003, Exp. 901, p. 167–192. Zbl1074.14020MR2074055
- [47] Yu.I. Manin – “Correspondances, motifs et transformations monoïdales”, Mat. Sb. 77 (119) (1968), p. 475–507, en russe ; traduction anglaise : Math. USSR Sbornik. Zbl0199.24803MR258836
- [48] F. Morel – “An introduction to -homotopy theory”, in Contemporary Developments in Algebraic K-theory (M. Karoubi, A. Kuku & C. Pedrini, éds.), ICTP Lect. Notes, vol. 15, 2003, p. 357–441. Zbl1081.14029MR2175638
- [49] F. Morel & V. Voevodsky – “-homotopy theory of schemes”, Publ. Math. Inst. Hautes Études Sci.90 (2001), p. 45–143. Zbl0983.14007MR1813224
- [50] D. Orlov, A. Vishik & V. Voevodsky – “An exact sequence for with applications to quadratic forms”, prépublication, www.math.uiuc.edu/K-theory, 2000. Zbl1124.14017
- [51] E. Peyre – “Corps de fonctions de variétés homogènes et cohomologie galoisienne”, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), p. 891–896. Zbl0871.14038MR1355848
- [52] A. Pfister – “Multiplikative quadratische Formen”, Arch. Math. (Basel) 16 (1965), p. 363–370. Zbl0146.26001MR184937
- [53] M. Rost – “Some new results on the Chow groups of quadrics”, prépublication, Regensburg, 1990.
- [54] L. Rowen – Ring theory, I, Pure and Applied Mathematics, vol. 127, Academic Press, 1988. Zbl0651.16001
- [55] W. Scharlau – “On the history of the algebraic theory of quadratic forms”, in Quadratic forms and their applications (Dublin, 1999), Contemp. Math., vol. 272, Providence, RI, 2000, p. 229–259. Zbl0974.11001MR1803370
- [56] J.E. Schneider – “Orthogonal groups of nonsingular forms of higher degree”, J. Algebra27 (1973), p. 112–116. Zbl0287.20038MR325795
- [57] A. Scholl – “Classical motives”, in Motives, Proc. Symp. Pure Math., vol. 55 (I), Providence, RI, 1994, p. 163–187. Zbl0814.14001MR1265529
- [58] T.A. Springer – “Sur les formes quadratiques d’indice zéro”, 234 (1952), p. 1517–1519. Zbl0046.24303MR47021
- [59] R.G. Swan – “Zero cycles on quadric hypersurfaces”, Proc. Amer. Math. Soc.107 (1989), p. 43–46. Zbl0718.14007MR979219
- [60] B. Totaro – “The Chow ring of a classifying space”, in Algebraic -theory (Seattle, 1997), Proc. Symp. Pure Math., vol. 67, Providence, RI, 1999, p. 249–281. Zbl0967.14005MR1743244
- [61] A. Vishik – “Integral motives of quadrics”, prépublication du Max Planck Institut für Mathematik (Bonn), 1998. MR2695910
- [62] —, “On dimensions of anisotropic forms in ”, prépublication du Max Planck Institut für Mathematik (Bonn), 2000.
- [63] —, “Motives of quadrics with applications to the theory of quadratic forms”, in Geometric methods in the algebraic theory of quadratic forms, Lect. Notes in Math., vol. 1835, Springer, 2004, p. 25–101. Zbl1047.11033MR2066515
- [64] V. Voevodsky – “Cancellation theorem”, prépublication, 2000. Zbl1202.14022
- [65] —, “Triangulated categories of motives over a field”, in Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, p. 188–238. Zbl1019.14009MR1764202
- [66] —, “Motivic cohomology with -coefficients”, Publ. Math. Inst. Hautes Études Sci.98 (2003), p. 59–104. Zbl1057.14028MR2031199
- [67] —, “Reduced power operations in motivic cohomology”, Publ. Math. Inst. Hautes Études Sci.98 (2003), p. 1–57. Zbl1057.14027MR2031198
- [68] A.R. Wadsworth – “Noetherian pairs and function fields of quadratic forms”, Ph.D. Thesis, Université de Chicago, 1972. MR2611680
- [69] —, “Similarity of quadratic forms and isomorphism of their function fields”, Trans. Amer. Math. Soc.208 (1975), p. 352–358. Zbl0336.15013MR376527
- [70] E. Witt – “Theorie der quadratischen Formen in beliebigen Körpern”, J. reine angew. Math. 176 (1937), p. 31–44. Zbl0015.05701JFM62.0106.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.