Quadratic forms and algebraic cycles

Bruno Kahn

Séminaire Bourbaki (2004-2005)

  • Volume: 47, page 113-164
  • ISSN: 0303-1179

Abstract

top
The theory of quadratic forms over a field was introduced by Witt in 1937. It plays a key rôle in Voevodsky’s proofs of the Milnor conjectures via the pioneering work of Rost. Conversely, the methods of Rost and Voevodsky using the theory of motives and motivic Steenrod operations have had a revolutionary impact on the theory of quadratic forms and have led to proofs of basic results that seemed previously inaccessible. We shall explain, among other things, how these methods yield a proof that, if q is an anisotropic form in I n (the n -th power of the augmentation ideal in the Witt ring) and dim q < 2 n + 1 , then dim q is of the form 2 n + 1 - 2 i for some integer i { 0 , , n } .

How to cite

top

Kahn, Bruno. "Formes quadratiques et cycles algébriques." Séminaire Bourbaki 47 (2004-2005): 113-164. <http://eudml.org/doc/252159>.

@article{Kahn2004-2005,
abstract = {Introduite par Witt en 1937, la théorie des formes quadratiques sur un corps joue un rôle central dans la démonstration des conjectures de Milnor par Voevodsky via les travaux pionniers de Rost qui y interviennent. Réciproquement, les méthodes de Rost et Voevodsky utilisant la théorie des motifs et les opérations de Steenrod motiviques révolutionnent la théorie des formes quadratiques et ont conduit à la démonstration de résultats de base qui semblaient auparavant inaccessibles. On expliquera notamment comment ces méthodes permettent de démontrer que, si $q$ est une forme quadratique anisotrope dans $I^n$ (puissance $n$-ième de l’idéal d’augmentation de l’anneau de Witt) et que $\dim q&lt;2^\{n+1\}$, alors $\dim q$ est de la forme $2^\{n+1\}-2^i$ pour un entier $i\in \lbrace 0,\dots ,n\rbrace $.},
author = {Kahn, Bruno},
journal = {Séminaire Bourbaki},
keywords = {quadratic forms; algebraic cycles; motives},
language = {fre},
pages = {113-164},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Formes quadratiques et cycles algébriques},
url = {http://eudml.org/doc/252159},
volume = {47},
year = {2004-2005},
}

TY - JOUR
AU - Kahn, Bruno
TI - Formes quadratiques et cycles algébriques
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 113
EP - 164
AB - Introduite par Witt en 1937, la théorie des formes quadratiques sur un corps joue un rôle central dans la démonstration des conjectures de Milnor par Voevodsky via les travaux pionniers de Rost qui y interviennent. Réciproquement, les méthodes de Rost et Voevodsky utilisant la théorie des motifs et les opérations de Steenrod motiviques révolutionnent la théorie des formes quadratiques et ont conduit à la démonstration de résultats de base qui semblaient auparavant inaccessibles. On expliquera notamment comment ces méthodes permettent de démontrer que, si $q$ est une forme quadratique anisotrope dans $I^n$ (puissance $n$-ième de l’idéal d’augmentation de l’anneau de Witt) et que $\dim q&lt;2^{n+1}$, alors $\dim q$ est de la forme $2^{n+1}-2^i$ pour un entier $i\in \lbrace 0,\dots ,n\rbrace $.
LA - fre
KW - quadratic forms; algebraic cycles; motives
UR - http://eudml.org/doc/252159
ER -

References

top
  1. [1] Y. André – “Motifs de dimension finie (d’après Kimura, O’Sullivan...)”, in Séminaire Bourbaki (2003/04), Astérisque, vol. 299, Paris, 2005, Exp. 929, p. 115–145. Zbl1080.14010MR2167204
  2. [2] Y. André & B. Kahn – “Nilpotence, radicaux et structures monoïdales (avec un appendice de P. O’Sullivan)”, Rend. Sem. Mat. Univ. Padova108 (2002), p. 107–291. Zbl1165.18300MR1956434
  3. [3] —, “Erratum : Nilpotence, radicaux et structures monoïdales”, Rend. Sem. Mat. Univ. Padova113 (2005), p. 125–128. Zbl1167.18302MR2168984
  4. [4] J. Kr. Arason – “Cohomologische Invarianten quadratischer Formen”, J. Algebra36 (1975), p. 448–491. Zbl0314.12104MR389761
  5. [5] J. Kr. Arason & M. Knebusch – “Über die Grade quadratischer Formen”, Math. Ann.234 (1978), p. 167–192. Zbl0362.10021MR506027
  6. [6] J. Kr. Arason & A. Pfister – “Beweis des Krullschen Durchschnittsatzes für den Wittring”, Invent. Math.12 (1971), p. 173–176. Zbl0212.37302MR294251
  7. [7] P. Balmer – “Witt cohomology, Mayer-Vietoris, Homotopy invariance and the Gersten Conjecture”, K -Theory 23 (2001), p. 15–30. Zbl0987.19002MR1852452
  8. [8] P. Balmer & C. Walter – “A Gersten-Witt spectral sequence for regular schemes”, Ann. scient. Éc. Norm. Sup. 4 e série 35 (2002), p. 127–152. Zbl1012.19003MR1886007
  9. [9] A. Borel – Linear algebraic groups, 2e ’ed., Springer, 1991. Zbl0726.20030MR1102012
  10. [10] P. Brosnan – “A short proof of Rost nilpotence via refined correspondences”, 8 (2003), p. 69–78. Zbl1044.11017MR2029161
  11. [11] —, “Steenrod operations in Chow theory”, Trans. Amer. Math. Soc.355 (2003), p. 1869–1903. Zbl1045.55005MR1953530
  12. [12] V. Chernousov, S. Gille & A. Merkurjev – “Motivic decomposition of isotropic projective homogeneous varieties”, Duke Math. J.126 (2005), p. 137–159. Zbl1086.14041MR2110630
  13. [13] C. Chevalley – “Sur les décompositions cellulaires des espaces G / B ”, in Algebraic groups and their generalizations : classical methods, Proc. Sympos. Pure Math., vol. 56 (I), Providence, RI, 1994, p. 1–23. Zbl0824.14042MR1278698
  14. [14] M. Demazure – “Motifs de variétés algébriques”, in Séminaire Bourbaki (1969/70), Lect. Notes in Math., vol. 180, Springer, 1971, Exp. 365, p. 19–38. Zbl0247.14004
  15. [15] L.E. Dickson – “On quadratic forms in a general field”, 14 (1907), p. 108–115, Math. papers IV, Chelsea, 1975, p. 512-519. Zbl38.0182.02MR1558550JFM38.0182.02
  16. [16] D. Edidin & W. Graham – “Equivariant intersection theory”, Invent. Math.131 (1998), p. 595–634. Zbl0940.14003MR1614555
  17. [17] R.W. Fitzgerald – “Function fields of quadratic forms”, Math. Z.178 (1981), p. 63–76. Zbl0442.10013MR627094
  18. [18] E. Friedlander – “Motivic complexes of Suslin-Voevodsky”, in Séminaire Bourbaki (1996/97), Astérisque, vol. 245, Paris, 1997, Exp. 833, p. 355–378. Zbl0908.19005MR1627118
  19. [19] W. Fulton – Intersection theory, 2e ’ed., Springer, 1984, 1998. Zbl0885.14002MR1644323
  20. [20] D.K. Harrison – “A Grothendieck ring of higher degree forms”, J. Algebra35 (1975), p. 123–138. Zbl0309.15016MR379370
  21. [21] D.W. Hoffmann – “Isotropy of quadratic forms over the function field of a quadric”, Math. Z.220 (1995), p. 461–476. Zbl0840.11017MR1362256
  22. [22] —, “Splitting patterns and invariants of quadratic forms”, Math. Nachr.190 (1998), p. 149–168. Zbl0916.11022MR1611608
  23. [23] J. Hurrelbrink & U. Rehmann – “Splitting patterns of quadratic forms”, Math. Nachr.176 (1995), p. 111–127. Zbl0876.11017MR1361129
  24. [24] O. Izhboldin – “Motivic equivalence of quadratic forms”, 3 (1998), p. 341–351. Zbl0957.11019MR1668530
  25. [25] —, “Fields of u -invariant 9 ”, Ann. of Math. (2) 154 (2001), p. 529–587. Zbl0998.11015MR1884616
  26. [26] O. Izhboldin & A. Vishik – “Quadratic forms with absolutely maximal splitting”, in Quadratic forms and their applications (Dublin, 1999), Contemp. Math., vol. 272, Providence, RI, 2000, p. 103–125. Zbl0972.11017MR1803363
  27. [27] U. Jannsen – “Motives, numerical equivalence and semi-simplicity”, Invent. Math.107 (1992), p. 447–452. Zbl0762.14003MR1150598
  28. [28] B. Kahn – “The total Stiefel-Whitney class of a regular representation”, J. Algebra144 (1991), p. 214–247. Zbl0777.20019MR1136904
  29. [29] —, “Formes quadratiques de hauteur et de degré 2 ”, Indag. Math.7 (1996), p. 47–66. Zbl0866.11030MR1621344
  30. [30] —, “La conjecture de Milnor, d’après V. Voevodsky”, in Séminaire Bourbaki (1996/97), Astérisque, vol. 245, Paris, 1997, Exp. 834, p. 379–418. Zbl0916.19001
  31. [31] B. Kahn, M. Rost & R. Sujatha – “Unramified cohomology of quadrics, I”, Amer. J. Math.120 (1998), p. 841–891. Zbl0913.11018MR1637963
  32. [32] N. Karpenko – “A relation between higher Witt indices”, Trans. Amer. Math. Soc., à paraître. Zbl1148.11017MR2279306
  33. [33] —, “Invariants algébro-géométriques de formes quadratiques”, Algebra i Analiz 2 (1990), p. 141–162, en russe ; traduction anglaise : Leningrad Math. J. 2 (1991), p. 119-138. 
  34. [34] —, “Isotropie d’espaces cellulaires relatifs et de variétés de drapeaux isotropes”, Algebra i Analiz 12 (2000), p. 3–69, en russe ; traduction anglaise : St. Petersburg Math. J. 12 (2001), p. 1-50. 
  35. [35] —, “On the anisotropy of orthogonal involutions”, 15 (2000), p. 1–22. Zbl0962.16015MR1751923
  36. [36] —, “Characterization of minimal Pfister neighbors by Rost projectors”, J. Pure Appl. Algebra160 (2001), p. 195–227. Zbl0998.11016MR1836000
  37. [37] —, “On the first Witt index of quadratic forms”, Invent. Math.153 (2003), p. 455–462. Zbl1032.11016MR1992018
  38. [38] —, “Holes in I n ”, Ann. scient. Éc. Norm. Sup. 4 e série 37 (2004), p. 973–1002. Zbl1108.11037MR2119244
  39. [39] N. Karpenko & A. Merkurjev – “Rost projectors and Steenrod operations”, 7 (2002), p. 481–493. Zbl1030.11013MR2015051
  40. [40] —, “Essential dimension of quadrics”, Invent. Math.153 (2003), p. 361–372. Zbl1032.11015MR1992016
  41. [41] I. Kersten & U. Rehmann – “Generic splitting of reductive groups”, 46 (1994), p. 35–70. Zbl0805.20034MR1256727
  42. [42] M. Knebusch – “Specialization of quadratic and symmetric bilinear forms, and a norm theorem”, Acta Arith.24 (1973), p. 279–299. Zbl0287.15010MR349582
  43. [43] —, “Generic splitting of quadratic forms, I”, Proc. London Math. Soc. (3) 33 (1976), p. 65–93. Zbl0351.15016MR412101
  44. [44] —, “Generic splitting of quadratic forms, II”, Proc. London Math. Soc. (3) 34 (1977), p. 1–31. Zbl0359.15013MR427345
  45. [45] T.Y. Lam – Introduction to quadratic forms over fields, Graduate Studies in Math., vol. 67, American Mathematical Society, Providence, 2005. Zbl1068.11023MR2104929
  46. [46] F. Loeser – “Cobordisme de variétés algébriques (d’après M. Levine et F. Morel)”, in Séminaire Bourbaki (2001/02), Astérisque, vol. 290, Paris, 2003, Exp. 901, p. 167–192. Zbl1074.14020MR2074055
  47. [47] Yu.I. Manin – “Correspondances, motifs et transformations monoïdales”, Mat. Sb. 77 (119) (1968), p. 475–507, en russe ; traduction anglaise : Math. USSR Sbornik. Zbl0199.24803MR258836
  48. [48] F. Morel – “An introduction to 𝐀 1 -homotopy theory”, in Contemporary Developments in Algebraic K-theory (M. Karoubi, A. Kuku & C. Pedrini, éds.), ICTP Lect. Notes, vol. 15, 2003, p. 357–441. Zbl1081.14029MR2175638
  49. [49] F. Morel & V. Voevodsky – “ 𝐀 1 -homotopy theory of schemes”, Publ. Math. Inst. Hautes Études Sci.90 (2001), p. 45–143. Zbl0983.14007MR1813224
  50. [50] D. Orlov, A. Vishik & V. Voevodsky – “An exact sequence for K * M / 2 with applications to quadratic forms”, prépublication, www.math.uiuc.edu/K-theory, 2000. Zbl1124.14017
  51. [51] E. Peyre – “Corps de fonctions de variétés homogènes et cohomologie galoisienne”, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), p. 891–896. Zbl0871.14038MR1355848
  52. [52] A. Pfister – “Multiplikative quadratische Formen”, Arch. Math. (Basel) 16 (1965), p. 363–370. Zbl0146.26001MR184937
  53. [53] M. Rost – “Some new results on the Chow groups of quadrics”, prépublication, Regensburg, 1990. 
  54. [54] L. Rowen – Ring theory, I, Pure and Applied Mathematics, vol. 127, Academic Press, 1988. Zbl0651.16001
  55. [55] W. Scharlau – “On the history of the algebraic theory of quadratic forms”, in Quadratic forms and their applications (Dublin, 1999), Contemp. Math., vol. 272, Providence, RI, 2000, p. 229–259. Zbl0974.11001MR1803370
  56. [56] J.E. Schneider – “Orthogonal groups of nonsingular forms of higher degree”, J. Algebra27 (1973), p. 112–116. Zbl0287.20038MR325795
  57. [57] A. Scholl – “Classical motives”, in Motives, Proc. Symp. Pure Math., vol. 55 (I), Providence, RI, 1994, p. 163–187. Zbl0814.14001MR1265529
  58. [58] T.A. Springer – “Sur les formes quadratiques d’indice zéro”, 234 (1952), p. 1517–1519. Zbl0046.24303MR47021
  59. [59] R.G. Swan – “Zero cycles on quadric hypersurfaces”, Proc. Amer. Math. Soc.107 (1989), p. 43–46. Zbl0718.14007MR979219
  60. [60] B. Totaro – “The Chow ring of a classifying space”, in Algebraic K -theory (Seattle, 1997), Proc. Symp. Pure Math., vol. 67, Providence, RI, 1999, p. 249–281. Zbl0967.14005MR1743244
  61. [61] A. Vishik – “Integral motives of quadrics”, prépublication du Max Planck Institut für Mathematik (Bonn), 1998. MR2695910
  62. [62] —, “On dimensions of anisotropic forms in I n ”, prépublication du Max Planck Institut für Mathematik (Bonn), 2000. 
  63. [63] —, “Motives of quadrics with applications to the theory of quadratic forms”, in Geometric methods in the algebraic theory of quadratic forms, Lect. Notes in Math., vol. 1835, Springer, 2004, p. 25–101. Zbl1047.11033MR2066515
  64. [64] V. Voevodsky – “Cancellation theorem”, prépublication, 2000. Zbl1202.14022
  65. [65] —, “Triangulated categories of motives over a field”, in Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, p. 188–238. Zbl1019.14009MR1764202
  66. [66] —, “Motivic cohomology with 𝐙 / 2 -coefficients”, Publ. Math. Inst. Hautes Études Sci.98 (2003), p. 59–104. Zbl1057.14028MR2031199
  67. [67] —, “Reduced power operations in motivic cohomology”, Publ. Math. Inst. Hautes Études Sci.98 (2003), p. 1–57. Zbl1057.14027MR2031198
  68. [68] A.R. Wadsworth – “Noetherian pairs and function fields of quadratic forms”, Ph.D. Thesis, Université de Chicago, 1972. MR2611680
  69. [69] —, “Similarity of quadratic forms and isomorphism of their function fields”, Trans. Amer. Math. Soc.208 (1975), p. 352–358. Zbl0336.15013MR376527
  70. [70] E. Witt – “Theorie der quadratischen Formen in beliebigen Körpern”, J. reine angew. Math. 176 (1937), p. 31–44. Zbl0015.05701JFM62.0106.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.