Homotopical dynamics II : Hopf invariants, smoothings and the Morse complex

Octavian Cornea

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 4, page 549-573
  • ISSN: 0012-9593

How to cite

top

Cornea, Octavian. "Homotopical dynamics II : Hopf invariants, smoothings and the Morse complex." Annales scientifiques de l'École Normale Supérieure 35.4 (2002): 549-573. <http://eudml.org/doc/82582>.

@article{Cornea2002,
author = {Cornea, Octavian},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Morse complex; Hopf invariant; framed bordism; non-smoothable Poincaré duality spaces},
language = {eng},
number = {4},
pages = {549-573},
publisher = {Elsevier},
title = {Homotopical dynamics II : Hopf invariants, smoothings and the Morse complex},
url = {http://eudml.org/doc/82582},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Cornea, Octavian
TI - Homotopical dynamics II : Hopf invariants, smoothings and the Morse complex
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 4
SP - 549
EP - 573
LA - eng
KW - Morse complex; Hopf invariant; framed bordism; non-smoothable Poincaré duality spaces
UR - http://eudml.org/doc/82582
ER -

References

top
  1. [1] Adams F., On the groups J(X). IV, Topology5 (1966) 21-71. Zbl0145.19902MR198470
  2. [2] Agoston M.K., On handle decompositions and diffeomorphisms, Trans. Amer. Math. Soc.137 (1969) 21-26. Zbl0176.21603MR236938
  3. [3] Arkowitz M., The generalized Whitehead product, Pacific J. Math.12 (1962) 7-23. Zbl0118.18404MR155328
  4. [4] Cohen R.L., Jones J.D.S., Segal G.B., Morse theory and classifying spaces, Preprint. 
  5. [5] Cohen R., Jones J.D.S., Segal G., Floer's Infinite Dimensional Morse Theory and Homotopy Theory, The Floer Memorial Volume, Birkhauser, 1995. Zbl0843.58019MR1362832
  6. [6] Cornea O., Homotopical dynamics: suspension and duality, Ergodic Theory Dynamical Systems20 (2000) 379-391. Zbl0984.37017MR1756976
  7. [7] Cornea O., Spanier–Whitehead duality and critical points, in: Homotopy Theory via Algebraic Geometry and Group Representations, Contemp. Math., 220, American Mathematical Society, 1998, pp. 47-63. Zbl0911.55004MR1642889
  8. [8] Cornea O., Cone-decompositions and degenerate critical points, Proc. London Math. Soc.77 (1998) 437-461. Zbl0913.55002MR1635165
  9. [9] Dula G., On conic spaces, in: Lecture Notes in Math., 1474, Springer, 1991, pp. 38-58. Zbl0793.55001MR1133891
  10. [10] Eells J., Kuiper N.H., Manifolds which are like projective planes, Pub. IHES14 (1962) 5-46. Zbl0109.15701MR145544
  11. [11] Franks J., Morse–Smale flows and homotopy theory, Topology18 (1979) 199-215. Zbl0426.58013MR546790
  12. [12] Ganea T., Cogroups and suspension, Invent. Math.9 (1970) 185-197. Zbl0194.55103MR267582
  13. [13] Ganea T., A generalization of the homology and homotopy suspension, Comment. Math. Helv.39 (1965) 295-322. Zbl0142.40702MR179791
  14. [14] Iwase N., Ganea's conjecture on the Lusternik–Schnirelmann category, Bull. London Math. Soc.30 (1998) 623-634. Zbl0947.55006MR1642747
  15. [15] Kahn D., Priddy S., Applications of the transfer to stable homotopy, Bull. Amer. Math. Soc.78 (1972) 981-987. Zbl0265.55009MR309109
  16. [16] Kervaire M., A manifold which does not admit any differentiable structure, Comment. Math. Helv.34 (1960) 257-270. Zbl0145.20304MR139172
  17. [17] Kervaire M., Milnor J., Groups of homotopy spheres. I, Ann. of Math.77 (1963) 504-537. Zbl0115.40505MR148075
  18. [18] Klein J., Higher Reidemeister torsion and parametrized Morse theory, Rend. Circ. Mat. Palermo (2) Suppl.30 (1993) 15-20. Zbl0807.57026MR1246615
  19. [19] Klein J., Poincaré duality embeddings and fiberwise homotopy theory, Topology, to appear. Zbl0928.57028MR1670412
  20. [20] Knapp K., On the bi-stable J-homomorphism, in: Lecture Notes in Math., 763, Springer, 1979, pp. 13-22. Zbl0429.55005MR561211
  21. [21] Ljusternik L., Schnirelmann L., Methodes topologiques dans les problèmes variationels, Hermann, Paris, 1934. Zbl0011.02803
  22. [22] Mahowald M., Some Whitehead products in Sn, Topology4 (1965) 17-26. Zbl0142.40704MR178467
  23. [23] Mahowald M., A new infinite family in 2π∗S, Topology16 (1977) 249-256. Zbl0357.55020
  24. [24] Mahowald M., Thompson R.D., The EHP sequence and periodic homotopy, in: James I.M. (Ed.), Hanbook of Algebraic Topology, Elsevier, Amsterdam, 1995, pp. 397-423. Zbl0865.55011MR1361895
  25. [25] Matsumoto T., On the minimal ordered Morse functions, Publ. RIMS Kyoto Univ.14 (1978) 673-684. Zbl0409.57033MR527195
  26. [26] McGibbon Ch., The Mislin genus of a space, in: CRM Proc. Lecture Notes, 6, American Mathematical Society, 1994, pp. 75-102. Zbl0820.55007MR1290585
  27. [27] Milnor J., On the cobordism ring Ω∗ and a complex analogue, Amer. J. Math.82 (1960) 505-521. Zbl0095.16702
  28. [28] Milnor J., Morse Theory, Ann. of Math. Studies, Princeton University Press, 1963. Zbl0108.10401MR163331
  29. [29] Quillen D.G., The Adams conjecture, Topology10 (1970) 67-80. Zbl0219.55013MR279804
  30. [30] Roitberg J., Lusternik–Schnirelmann category of some infinite complexes, Topology39 (2000) 95-101. Zbl0933.55004MR1710994
  31. [31] Schwarz M., Morse Homology, Progress in Mathematics, 111, Birkhauser, 1993. Zbl0806.57020MR1239174
  32. [32] Sharko V., Functions on Manifolds, Transl. of Math. Monographs, 131, American Mathematical Society, 1993. Zbl0791.57001MR1248167
  33. [33] Smale S., Differentiable dynamical systems, Bull. Amer. Math. Soc.73 (1967) 747-817. Zbl0202.55202MR228014
  34. [34] Smith L., Manifolds with few cells and the stable homotopy of spheres, Proc. Amer. Math. Soc.31 (1) (1972) 279-285. Zbl0232.55027MR296957
  35. [35] Spivak M., Spaces satisfying Poincaré duality, Topology6 (1967) 77-101. Zbl0185.50904MR214071
  36. [36] Stanley D., Spaces of Lusternik–Schnirelmann category n and of cone-length n+1, Topology39 (2000) 985-1019. Zbl0978.55002MR1763960
  37. [37] Sullivan D., Genetics of homotopy theory and the Adams conjecture, Ann. of Math.100 (1974) 1-79. Zbl0355.57007MR442930
  38. [38] Toda H., Composition Methods in the Homotopy Groups of Spheres, Ann. of Math. Studies, 49, Princeton Univ. Press, 1962. Zbl0101.40703MR143217
  39. [39] Wall C.T.C., Classification problems in differential topology IV, Topology3 (1966) 73-94. Zbl0149.20501MR192509
  40. [40] Whitehead G., Elements of Homotopy Theory, Grad. Texts in Math., 61, Springer, 1978. Zbl0406.55001MR516508
  41. [41] Witten E., Supersymmetry and Morse theory, J. Differential Geom.17 (1982) 661-692. Zbl0499.53056MR683171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.