Manifolds which are like projective planes

James Eells; Nicolaas H. Kuiper

Publications Mathématiques de l'IHÉS (1962)

  • Volume: 14, page 5-46
  • ISSN: 0073-8301

How to cite

top

Eells, James, and Kuiper, Nicolaas H.. "Manifolds which are like projective planes." Publications Mathématiques de l'IHÉS 14 (1962): 5-46. <http://eudml.org/doc/103832>.

@article{Eells1962,
author = {Eells, James, Kuiper, Nicolaas H.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {topology},
language = {eng},
pages = {5-46},
publisher = {Institut des Hautes Études Scientifiques},
title = {Manifolds which are like projective planes},
url = {http://eudml.org/doc/103832},
volume = {14},
year = {1962},
}

TY - JOUR
AU - Eells, James
AU - Kuiper, Nicolaas H.
TI - Manifolds which are like projective planes
JO - Publications Mathématiques de l'IHÉS
PY - 1962
PB - Institut des Hautes Études Scientifiques
VL - 14
SP - 5
EP - 46
LA - eng
KW - topology
UR - http://eudml.org/doc/103832
ER -

References

top
  1. [1] J. F. ADAMS, On the non-existence of elements of Hopf invariant one, Annals of Math., 72 (1960), 20-104. Zbl0096.17404MR25 #4530
  2. [2] M. F. ATIYAH and F. HIRZEBRUCH, Riemann-Roch theorems for differentiable manifolds, Bull. A.M.S., 65 (1959), 276-281. Zbl0142.40901MR22 #989
  3. [3] A. BOREL and F. HIRZEBRUCH, Characteristic classes and homogeneous spaces, III, Am. J. Math., 82 (1960), 491-504. Zbl0097.36401MR22 #11413
  4. [4] A. DOLD, Über fasernweise Homotopieäquivalenz von Faserräume, Math. Z., 62 (1955), 111-136. Zbl0064.17403MR17,519d
  5. [5] J. EELLS, Alexander-Pontrjagin duality in function spaces, Proc. Symp. in Pure Math., A.M.S., vol. 3 (1961), 109-129. Zbl0107.16702MR23 #A2879
  6. [6] J. EELLS and N. H. KUIPER, Closed manifolds which admit nondegenerate functions with three critical points, Proc. Amsterdam, Indagationes Math., 23 (1961), 411-417. Zbl0101.16102MR25 #2612
  7. [7] J. EELLS and N. H. KUIPER, An invariant for certain smooth manifolds, Annali di Math. (1962). Zbl0119.18704MR27 #6280
  8. [8] H. FREUDENTHAL, Zur ebenen Oktavengeometrie, Proc. Amsterdam A, 56 = Indag. Math., 15 (1953), 195-200. Zbl0053.01503MR15,56f
  9. [9] A. HAEFLIGER, Differentiable imbeddings, Bull. A.M.S., 67 (1961), 109-114. Zbl0099.18101MR23 #A665
  10. [10] P. HILTON, Homotopy theory and duality, II, Notes Cornell Univ., 1959. (As this is not available any more, compare Hilton-Wylie, Algebraic topology.) 
  11. [11] F. HIRZEBRUCH, Neue topologische Methoden in der algebraischen Geometrie, Springer 1956. Zbl0070.16302MR18,509b
  12. [12] F. HIRZEBRUCH, Some problems on real and complex manifolds, Annals of Math., 60 (1954), 213-236. Zbl0056.16803MR16,518c
  13. [13] F. HIRZEBRUCH-KODAIRA, On the complex projective spaces, Journ. Math. Pur. Appl., 36 (1957), p. 201-216. Zbl0090.38601
  14. [14] I. M. JAMES, Multiplications on spheres II, Trans. A.M.S., 84 (1957), 545-558. Zbl0085.17202MR19,875e
  15. [15] M. KERVAIRE, A manifold which does not admit any differentiable structure, Comm. Math. Helv., 34 (1961), 257-270. Zbl0145.20304MR25 #2608
  16. [16] M. KERVAIRE and J. MILNOR, Groups of homotopy spheres, I, II (in preparation). Zbl0115.40505
  17. [17] N. H. KUIPER, A continuous function with two critical points, Bull. A.M.S., 67 (1961), 281-285. Zbl0098.36604MR25 #1559
  18. [18] B. MAZUR, The definition of equivalence of combinatorial imbeddings, Public. de l'Institut des Hautes Études scientifiques, 3 (1959), 97-119. Zbl0119.38702MR22 #7134
  19. [19] J. MILNOR, On manifolds homeomorphic to the 7-sphere, Annals of Math., 64 (1956), 399-405. Zbl0072.18402MR18,498d
  20. [20] J. MILNOR, On the relation between differentiable manifolds and combinatorial manifolds, Notes, Princeton Univ., 1956. 
  21. [21] J. MILNOR, On simply connected 4-manifolds, Symp. Intern. de Top. Alg., Mexico, 1958, 122-128. Zbl0105.17204MR21 #2240
  22. [22] J. MILNOR, Some consequences of a theorem of Bott, Annals of Math., 68 (1958), 444-449. Zbl0085.17301MR21 #1591
  23. [23] M. MORSE, The calculus of variations in the large, A.M.S. Coll. Publ., 18, 1934. Zbl0011.02802MR98f:58070JFM60.0450.01
  24. [24] M. MORSE, Topologically non-degenerate functions on a compact n-manifolds, J. d'Analyse Math., VII (1959), 189-208. Zbl0096.30603MR22 #4071
  25. [25] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Act. sci. ind., 1183 (1952), 91-154. Zbl0049.12602MR14,1113a
  26. [26] R. REMMERT-T. v. d. VEN, Zwei Sätze über die Komplex projektive Ebene, Nieuw Archief voor Wiskunde, VIII (1960), 147-157. Zbl0136.20703
  27. [27] H. SEIFERT und W. THRELFALL, Lehrbuch der Topologie, Leipzig, 1934. Zbl0009.08601JFM60.0496.05
  28. [28] H. SEIFERT und W. THRELFALL, Variationsrechnung im Grossen, Teubner, 1934. 
  29. [29] N. SHIMADA, Differentiable structures on the 15-spheres and Pontrjagin classes of certain manifolds, Nagoya Math. J., 12 (1957), 59-69. Zbl0145.20303MR20 #2715
  30. [30] S. SMALE, On gradient dynamical systems, Annals of Math. (1961). Zbl0136.43702MR24 #A2973
  31. [31] S. SMALE, The generalized Poincaré conjecture in higher dimensions, Bull. A.M.S., 66 (1960), 373-375. Zbl0099.39201MR23 #A2220
  32. [32] S. SMALE, Generalized Poincaré's conjecture in dimensions greater than four, Annals of Math., 74 (1961), 391-406. Zbl0099.39202MR25 #580
  33. [33] J. STALLINGS, The topology of high-dimensional piecewise linear manifolds, Annals of Math. (in preparation). Zbl0107.40203
  34. [35] R. THOM, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Écol. norm. sup., 69 (1952), 109-182. Zbl0049.40001MR14,1004c
  35. [36] R. THOM, Quelques propriétés globales des variétés différentiables, Comm. Math. Helv., 28 (1954), 17-86. Zbl0057.15502MR15,890a
  36. [37] R. THOM, Les classes caractéristiques de Pontrjagin des variétés triangulées, Symp. Inter de Top. Alg., Mexico, 1958, 54-67. Zbl0088.39201MR21 #866
  37. [38] C. T. C. WALL, Determination of the cobordism ring, Annals of Math., 72 (1960), 292-311. Zbl0097.38801MR22 #11403
  38. [39] C. T. C. WALL, Classification of (n—1)-connected 2n-manifolds, Annals of Math., 75 (1962), 163-189. Zbl0218.57022MR26 #3071
  39. [40] J. H. C. WHITEHEAD, On C1-complexes, Annals of Math., 41 (1940), 809-824. Zbl0025.09203MR2,73dJFM66.0955.03
  40. [41] J. H. C. WHITEHEAD, Manifolds with transverse fields in euclidean space, Annals of Math., 73 (1961), 154-213. Zbl0096.37802MR23 #A2225
  41. [42] N. E. STEENROD, Topology of Fibre Bundles, Princeton, 1951. Zbl0054.07103MR12,522b
  42. [43] S. SMALE, A Diffeomorphism Criterion for Manifolds (in preparation). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.