The spectral sequence relating algebraic K-theory to motivic cohomology
Eric M. Friedlander; Andrei Suslin
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 6, page 773-875
- ISSN: 0012-9593
Access Full Article
topHow to cite
topFriedlander, Eric M., and Suslin, Andrei. "The spectral sequence relating algebraic K-theory to motivic cohomology." Annales scientifiques de l'École Normale Supérieure 35.6 (2002): 773-875. <http://eudml.org/doc/82590>.
@article{Friedlander2002,
author = {Friedlander, Eric M., Suslin, Andrei},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {spectral sequence; motivic cohomology; K-theory; Lichtenbaum-Quillen conjecture},
language = {eng},
number = {6},
pages = {773-875},
publisher = {Elsevier},
title = {The spectral sequence relating algebraic K-theory to motivic cohomology},
url = {http://eudml.org/doc/82590},
volume = {35},
year = {2002},
}
TY - JOUR
AU - Friedlander, Eric M.
AU - Suslin, Andrei
TI - The spectral sequence relating algebraic K-theory to motivic cohomology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 6
SP - 773
EP - 875
LA - eng
KW - spectral sequence; motivic cohomology; K-theory; Lichtenbaum-Quillen conjecture
UR - http://eudml.org/doc/82590
ER -
References
top- [1] Bass H., Algebraic K-Theory, W.A. Benjamin, 1968. Zbl0174.30302MR249491
- [2] Beilinson A., Letter to C. Soulé (1982).
- [3] Bloch S., Algebraic cycles and higher K-theory, Adv. in Math.61 (1986) 267-304. Zbl0608.14004MR852815
- [4] Bloch S., The moving lemma for higher Chow groups, J. Algebraic Geom.3 (1994) 537-568. Zbl0830.14003MR1269719
- [5] Bloch S., Lichtenbaum S., A spectral sequence for motivic cohomology, Preprint.
- [6] Bourbaki N., General Topology, Springer-Verlag, 1989.
- [7] Bousfield A., Friedlander E., Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, in: Geometric Applications of Homotopy Theory II, Lecture Notes in Math., 658, Springer-Verlag, 1978, pp. 80-130. Zbl0405.55021
- [8] Browder W., Algebraic K-theory with coefficients Z/p, in: Geometric Applications of Homotopy Theory, Lecture Notes in Math., 657, Springer-Verlag, 1978, pp. 40-84. Zbl0386.18011MR513541
- [9] Brown K., Gersten S., Algebraic K-theory as generalized sheaf cohomology, in: Algebraic K-theory, I: Higher K-theories, Lecture Notes in Math., 341, Springer-Verlag, 1973, pp. 266-292. Zbl0291.18017MR347943
- [10] Friedlander E., Voevodsky V., Bivariant cycle cohomology, in: Voevodsky V., Suslin A., Friedlander E. (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 138-187. Zbl1019.14011MR1764201
- [11] Godement R., Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958. Zbl0080.16201MR102797
- [12] Grayson D., Weight filtrations via commuting automorphisms, K-Theory9 (1995) 139-172. Zbl0826.19003MR1340843
- [13] Jardine J., Generalized étale cohomology theories, Birkhäuser Verlag, Basel, 1997. Zbl0868.19003MR1437604
- [14] Kieboom R., A pullback theorem for cofibrations, Manuscripta Math.58 (1987) 381-384. Zbl0617.55002MR893162
- [15] Landsburg S., Some filtrations on higher K-theory and related invariants, K-theory6 (1992) 431-457. Zbl0774.14006MR1194843
- [16] Levine M., Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom.10 (2001) 299-363. Zbl1077.14509MR1811558
- [17] Lillig J., A union theorem for cofibrations, Arch. Math.24 (1973) 410-415. Zbl0274.55008MR334193
- [18] Massey W., Products in exact couples, Ann. Math.59 (1954) 558-569. Zbl0057.15204MR60829
- [19] MacLane S., Homology, Springer-Verlag, 1963. Zbl0133.26502MR156879
- [20] May P., Simplicial Objects in Algebraic Topology, University of Chicago Press, 1967. Zbl0769.55001
- [21] Morel F., Voevodsky V., A1-homotopy theory of schemes, Publ. Math. IHES90 (2001) 45-143. Zbl0983.14007MR1813224
- [22] Oka S., Multiplications on the Moore spectrum, Mem. Fac. Sci Kyushu, Ser. A38 (1984) 257-276. Zbl0552.55009MR760188
- [23] Puppe D., Bemerkungen über die Erweiterung von Homotopien, Arch. Math.18 (1967) 81-88. Zbl0149.20101MR206954
- [24] Quillen D., Homotopical Algebra, Lecture Notes in Math., 43, Springer-Verlag, 1967. Zbl0168.20903MR223432
- [25] Quillen D., Higher algebraic K-theory: I, in: Algebraic K-theory, I: Higher K-theories, Lecture Notes in Math., 341, Springer-Verlag, 1973, pp. 85-147. Zbl0292.18004MR338129
- [26] Segal G., Categories and cohomology theories, Topology13 (1974) 293-312. Zbl0284.55016MR353298
- [27] Serre J.-P., Algèbre locale multiplicités, Lecture Notes in Math., 341, Springer-Verlag, 1975. Zbl0296.13018MR201468
- [28] Strom A., The homotopy category is a homotopy category, Arch. Math.23 (1972) 435-441. Zbl0261.18015MR321082
- [29] Suslin A., Higher Chow groups and étale cohomology, in: Voevodsky V., Suslin A., Friedlander E. (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 237-252. Zbl1019.14001MR1764203
- [30] Suslin A., Voevodsky V., Singular homology of abstract algebraic varieties, Invent. Math.123 (1996) 61-94. Zbl0896.55002MR1376246
- [31] Suslin A., Voevodsky V., Bloch–Kato conjecture and motivic cohomology with finite coefficients, in: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, 1998, pp. 117-189. Zbl1005.19001MR1744945
- [32] Thomason R., Trobaugh T., Higher algebraic K-theory of schemes and of derived categories, in: The Grothendieck Festschrift, Vol. III, in: Progr. Math., Vol. 88, pp. 247–435. MR1106918
- [33] Voevodsky V., Cohomological theory of presheaves with transfers, in: Voevodsky V., Suslin A., Friedlander E. (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 87-137. Zbl1019.14010MR1764200
- [34] Voevodsky V., Triangulated category of motives over a field, in: Voevodsky V., Suslin A., Friedlander E. (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 188-238. Zbl1019.14009MR1764202
- [35] Voevodsky V., Motivic cohomology are isomorphic to higher Chow groups, Preprint. Zbl1057.14026
- [36] Voevodsky V., Mazza C., Weibel C., Lectures on motivic cohomology, Preprint. Zbl1115.14010
- [37] Waldhausen F., Algebraic K-theory of spaces, in: Algebraic and Geometric Topology (New Brunswick, NJ, 1983), Lecture Notes in Math., 1126, Springer-Verlag, 1985, pp. 318-419. Zbl0579.18006MR802796
- [38] Weibel C., An Introduction to Homological Algebra, Cambridge University Press, 1994. Zbl0797.18001MR1269324
- [39] Weibel C., Products in higher Chow groups and motivic cohomology, in: Algebraic K-theory (Seattle, WA, 1997), Proceedings of Symposia in Pure Math., 67, 1999, pp. 305-315. Zbl0942.19003MR1743246
- [40] Whitehead G., Elements of Homotopy Theory, Springer-Verlag, 1978. Zbl0406.55001MR516508
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.