The spectral sequence relating algebraic K-theory to motivic cohomology

Eric M. Friedlander; Andrei Suslin

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 6, page 773-875
  • ISSN: 0012-9593

How to cite

top

Friedlander, Eric M., and Suslin, Andrei. "The spectral sequence relating algebraic K-theory to motivic cohomology." Annales scientifiques de l'École Normale Supérieure 35.6 (2002): 773-875. <http://eudml.org/doc/82590>.

@article{Friedlander2002,
author = {Friedlander, Eric M., Suslin, Andrei},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {spectral sequence; motivic cohomology; K-theory; Lichtenbaum-Quillen conjecture},
language = {eng},
number = {6},
pages = {773-875},
publisher = {Elsevier},
title = {The spectral sequence relating algebraic K-theory to motivic cohomology},
url = {http://eudml.org/doc/82590},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Friedlander, Eric M.
AU - Suslin, Andrei
TI - The spectral sequence relating algebraic K-theory to motivic cohomology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 6
SP - 773
EP - 875
LA - eng
KW - spectral sequence; motivic cohomology; K-theory; Lichtenbaum-Quillen conjecture
UR - http://eudml.org/doc/82590
ER -

References

top
  1. [1] Bass H., Algebraic K-Theory, W.A. Benjamin, 1968. Zbl0174.30302MR249491
  2. [2] Beilinson A., Letter to C. Soulé (1982). 
  3. [3] Bloch S., Algebraic cycles and higher K-theory, Adv. in Math.61 (1986) 267-304. Zbl0608.14004MR852815
  4. [4] Bloch S., The moving lemma for higher Chow groups, J. Algebraic Geom.3 (1994) 537-568. Zbl0830.14003MR1269719
  5. [5] Bloch S., Lichtenbaum S., A spectral sequence for motivic cohomology, Preprint. 
  6. [6] Bourbaki N., General Topology, Springer-Verlag, 1989. 
  7. [7] Bousfield A., Friedlander E., Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, in: Geometric Applications of Homotopy Theory II, Lecture Notes in Math., 658, Springer-Verlag, 1978, pp. 80-130. Zbl0405.55021
  8. [8] Browder W., Algebraic K-theory with coefficients Z/p, in: Geometric Applications of Homotopy Theory, Lecture Notes in Math., 657, Springer-Verlag, 1978, pp. 40-84. Zbl0386.18011MR513541
  9. [9] Brown K., Gersten S., Algebraic K-theory as generalized sheaf cohomology, in: Algebraic K-theory, I: Higher K-theories, Lecture Notes in Math., 341, Springer-Verlag, 1973, pp. 266-292. Zbl0291.18017MR347943
  10. [10] Friedlander E., Voevodsky V., Bivariant cycle cohomology, in: Voevodsky V., Suslin A., Friedlander E. (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 138-187. Zbl1019.14011MR1764201
  11. [11] Godement R., Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958. Zbl0080.16201MR102797
  12. [12] Grayson D., Weight filtrations via commuting automorphisms, K-Theory9 (1995) 139-172. Zbl0826.19003MR1340843
  13. [13] Jardine J., Generalized étale cohomology theories, Birkhäuser Verlag, Basel, 1997. Zbl0868.19003MR1437604
  14. [14] Kieboom R., A pullback theorem for cofibrations, Manuscripta Math.58 (1987) 381-384. Zbl0617.55002MR893162
  15. [15] Landsburg S., Some filtrations on higher K-theory and related invariants, K-theory6 (1992) 431-457. Zbl0774.14006MR1194843
  16. [16] Levine M., Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom.10 (2001) 299-363. Zbl1077.14509MR1811558
  17. [17] Lillig J., A union theorem for cofibrations, Arch. Math.24 (1973) 410-415. Zbl0274.55008MR334193
  18. [18] Massey W., Products in exact couples, Ann. Math.59 (1954) 558-569. Zbl0057.15204MR60829
  19. [19] MacLane S., Homology, Springer-Verlag, 1963. Zbl0133.26502MR156879
  20. [20] May P., Simplicial Objects in Algebraic Topology, University of Chicago Press, 1967. Zbl0769.55001
  21. [21] Morel F., Voevodsky V., A1-homotopy theory of schemes, Publ. Math. IHES90 (2001) 45-143. Zbl0983.14007MR1813224
  22. [22] Oka S., Multiplications on the Moore spectrum, Mem. Fac. Sci Kyushu, Ser. A38 (1984) 257-276. Zbl0552.55009MR760188
  23. [23] Puppe D., Bemerkungen über die Erweiterung von Homotopien, Arch. Math.18 (1967) 81-88. Zbl0149.20101MR206954
  24. [24] Quillen D., Homotopical Algebra, Lecture Notes in Math., 43, Springer-Verlag, 1967. Zbl0168.20903MR223432
  25. [25] Quillen D., Higher algebraic K-theory: I, in: Algebraic K-theory, I: Higher K-theories, Lecture Notes in Math., 341, Springer-Verlag, 1973, pp. 85-147. Zbl0292.18004MR338129
  26. [26] Segal G., Categories and cohomology theories, Topology13 (1974) 293-312. Zbl0284.55016MR353298
  27. [27] Serre J.-P., Algèbre locale multiplicités, Lecture Notes in Math., 341, Springer-Verlag, 1975. Zbl0296.13018MR201468
  28. [28] Strom A., The homotopy category is a homotopy category, Arch. Math.23 (1972) 435-441. Zbl0261.18015MR321082
  29. [29] Suslin A., Higher Chow groups and étale cohomology, in: Voevodsky V., Suslin A., Friedlander E. (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 237-252. Zbl1019.14001MR1764203
  30. [30] Suslin A., Voevodsky V., Singular homology of abstract algebraic varieties, Invent. Math.123 (1996) 61-94. Zbl0896.55002MR1376246
  31. [31] Suslin A., Voevodsky V., Bloch–Kato conjecture and motivic cohomology with finite coefficients, in: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, 1998, pp. 117-189. Zbl1005.19001MR1744945
  32. [32] Thomason R., Trobaugh T., Higher algebraic K-theory of schemes and of derived categories, in: The Grothendieck Festschrift, Vol. III, in: Progr. Math., Vol. 88, pp. 247–435. MR1106918
  33. [33] Voevodsky V., Cohomological theory of presheaves with transfers, in: Voevodsky V., Suslin A., Friedlander E. (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 87-137. Zbl1019.14010MR1764200
  34. [34] Voevodsky V., Triangulated category of motives over a field, in: Voevodsky V., Suslin A., Friedlander E. (Eds.), Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, 143, 2000, pp. 188-238. Zbl1019.14009MR1764202
  35. [35] Voevodsky V., Motivic cohomology are isomorphic to higher Chow groups, Preprint. Zbl1057.14026
  36. [36] Voevodsky V., Mazza C., Weibel C., Lectures on motivic cohomology, Preprint. Zbl1115.14010
  37. [37] Waldhausen F., Algebraic K-theory of spaces, in: Algebraic and Geometric Topology (New Brunswick, NJ, 1983), Lecture Notes in Math., 1126, Springer-Verlag, 1985, pp. 318-419. Zbl0579.18006MR802796
  38. [38] Weibel C., An Introduction to Homological Algebra, Cambridge University Press, 1994. Zbl0797.18001MR1269324
  39. [39] Weibel C., Products in higher Chow groups and motivic cohomology, in: Algebraic K-theory (Seattle, WA, 1997), Proceedings of Symposia in Pure Math., 67, 1999, pp. 305-315. Zbl0942.19003MR1743246
  40. [40] Whitehead G., Elements of Homotopy Theory, Springer-Verlag, 1978. Zbl0406.55001MR516508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.