Dynamique des homéomorphismes du plan au voisinage d'un point fixe

Patrice Le Calvez

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 1, page 139-171
  • ISSN: 0012-9593

How to cite

top

Le Calvez, Patrice. "Dynamique des homéomorphismes du plan au voisinage d'un point fixe." Annales scientifiques de l'École Normale Supérieure 36.1 (2003): 139-171. <http://eudml.org/doc/82595>.

@article{LeCalvez2003,
author = {Le Calvez, Patrice},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {homomorphism of a surface; fixed point; Lefschetz indices; iterates of the map; periodic orbits},
language = {fre},
number = {1},
pages = {139-171},
publisher = {Elsevier},
title = {Dynamique des homéomorphismes du plan au voisinage d'un point fixe},
url = {http://eudml.org/doc/82595},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Le Calvez, Patrice
TI - Dynamique des homéomorphismes du plan au voisinage d'un point fixe
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 1
SP - 139
EP - 171
LA - fre
KW - homomorphism of a surface; fixed point; Lefschetz indices; iterates of the map; periodic orbits
UR - http://eudml.org/doc/82595
ER -

References

top
  1. [1] Birkhoff G.-D., An extension of Poincaré's last geometric theorem, Acta Math.47 (1926) 297-311, in: Collected Math. Papers, Vol. II, Dover, pp. 252–260. Zbl52.0573.02MR1555218JFM52.0573.02
  2. [2] Birkhoff G.-D., Sur quelques courbes fermées remarquables, Bull. Soc. Math. France80 (1932) 1-26, in: Collected Math. Papers, Vol. II, Dover, pp. 444–461. Zbl0005.22002MR1504983
  3. [3] Bonino M., Propriétés locales de l'espace des homéomorphismes de Brouwer, Ergodic Theory Dynam. Systems19 (1999) 1405-1423. Zbl0984.37043MR1738944
  4. [4] Brouwer L.E.J., Beweis des ebenen Translationssatzes, Math. Ann.72 (1912) 37-54. Zbl43.0569.02MR1511684JFM43.0569.02
  5. [5] Brown M., A new proof of Brouwer's lemma on translation arcs, Houston J. Math.10 (1984) 35-41. Zbl0551.57005MR736573
  6. [6] Brown M., On the fixed point index of iterates of planar homeomorphisms, Proc. Amer. Math. Soc.108 (1990) 1109-1114. Zbl0686.58028MR994772
  7. [7] Carathéodory C., Über die begrenzung einfach zusammenhangender Gebiete, Math. Ann.73 (1913) 323-370. Zbl44.0757.02MR1511737JFM44.0757.02
  8. [8] Carter P.H., An improvment of the Poincaré–Birkhoff theorem, Trans. Amer. Math. Soc.269 (1982) 285-299. Zbl0507.55002MR637039
  9. [9] Cartwright M.L., Littlewood J.C., Some fixed point theorems, Ann. of Math.54 (1951) 1-37. Zbl0058.38604MR42690
  10. [10] Fathi A., An orbit closing proof of Brouwer's lemma on translation arcs, L'Enseignement Math.33 (1987) 315-322. Zbl0649.54022MR925994
  11. [11] Flucher M., Fixed points of measure preserving torus homeomorphisms, Manuscripta Math.68 (1990) 271-293. Zbl0722.58027MR1065931
  12. [12] Ford L.R., Automorphic Functions, Chelsea Publishing, New York, 1951. Zbl55.0810.04
  13. [13] Franks J., Generalizations of the Poincaré–Birkhoff theorem, Ann. of Math.128 (1988) 139-151. Zbl0676.58037MR951509
  14. [14] Franks J., A variation on the Poincaré–Birkhoff theorem, Contemp. Math.81 (1988) 139-151. Zbl0679.58026MR986260
  15. [15] Franks J., Recurrence and fixed points of surface homeomorphims, Ergodic Theory Dynam. Systems8∗ (1988) 99-107. Zbl0634.58023
  16. [16] Franks J., Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math.2 (1996) 1-19. Zbl0891.58033MR1371312
  17. [17] Guillou L., Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré–Birkhoff, Topology33 (1994) 331-351. Zbl0924.55001MR1273787
  18. [18] Handel M., There are no minimal homeomorphisms of the multipunctured plane, Ergodic Theory Dynam. Systems12 (1992) 75-83. Zbl0769.58037MR1162400
  19. [19] Herman M., Sur les courbes invariantes par les difféomorphismes de l'anneau, vol. 2, Astérisque, Soc. Math. de France144 (1986). Zbl0613.58021
  20. [20] Hocking J., Young G., Topology, Dover Publications, New York, 1961. Zbl0718.55001MR125557
  21. [21] Hofer H., Zehnder E., Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994. Zbl0837.58013MR1306732
  22. [22] Kérékjártó B.V., Vorlesungen u&#x030B;ber Topologie (I), Springer-Verlag, Berlin, 1923. 
  23. [23] Le Calvez P., Une propriété dynamique des homéomorphismes du plan au voisinage d'un point fixe d'indice &gt;1, Topology38 (1999) 23-35. Zbl0976.54046MR1644067
  24. [24] Le Calvez P., Yoccoz J.-C., Un théorème d'indice pour les homéomorphismes du plan au voisinage d'un point fixe, Ann. of Math.146 (1997) 241-293. Zbl0895.58032MR1477759
  25. [25] Le Calvez P., Yoccoz J.-C., Suite des indices de Lefschetz des itérés pour un domaine de Jordan qui est un bloc isolant, Manuscrit. 
  26. [26] Le Roux F., Dynamique des homéomorphismes de surfaces, versions topologiques des théorèmes de la fleur de Leau–Fatou et de la variété stable, Prépublication, Orsay. 
  27. [27] Mather J., Invariant subsets of area-preserving homeomorphisms of surfaces, Adv. Math. Suppl. Stud.7B (1994) 331-351. Zbl0505.58027
  28. [28] Newman M.H.A., Elements of the Topology of Plane Sets of Points, Cambridge University Press, Cambridge, 1951. Zbl0045.44003MR44820
  29. [29] Nikishin N.A., Fixed points of diffeomorphisms of two-dimensional spheres preserving an oriented plane, Funktional Anal. i Prilozen.8 (1974) 84-85. Zbl0298.57019MR346846
  30. [30] Perez-Marco R., Fixed points and circles maps, Acta Math.179 (1997) 243-294. Zbl0914.58027MR1607557
  31. [31] Pelikan S., Slaminka E., A bound for the fixed point index of area-preserving homeomorphisms of two-manifolds, Ergodic Theory Dynam. Systems7 (1987) 463-479. Zbl0632.58014MR912377
  32. [32] Salamon D., Zehnder E., Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math.45 (1992) 1303-1360. Zbl0766.58023MR1181727
  33. [33] Schwarz M., On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math.193 (2) (2000) 419-461. Zbl1023.57020MR1755825
  34. [34] Simon C.P., A bound for the fixed-point index of an area-preserving map with applications to mechanics, Inventiones Math.26 (1974) 187-200. Zbl0331.55006MR353372

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.