Generic robustness of spectral decompositions

Flavio Abdenur

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 2, page 213-224
  • ISSN: 0012-9593

How to cite


Abdenur, Flavio. "Generic robustness of spectral decompositions." Annales scientifiques de l'École Normale Supérieure 36.2 (2003): 213-224. <>.

author = {Abdenur, Flavio},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {heterodimensional cycles; homoclinic class; nonhyperbolic theory; spectral decomposition; Palis conjecture; homoclinic bifurcations},
language = {eng},
number = {2},
pages = {213-224},
publisher = {Elsevier},
title = {Generic robustness of spectral decompositions},
url = {},
volume = {36},
year = {2003},

AU - Abdenur, Flavio
TI - Generic robustness of spectral decompositions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 2
SP - 213
EP - 224
LA - eng
KW - heterodimensional cycles; homoclinic class; nonhyperbolic theory; spectral decomposition; Palis conjecture; homoclinic bifurcations
UR -
ER -


  1. [1] Abdenur F., Attractors of generic diffeomorphisms are persistent, preprint IMPA, 2001. MR1950789
  2. [2] Bonatti Ch., Diaz L.J., Persistence of transitive diffeomorphisms, Ann. Math.143 (1995) 367-396. Zbl0852.58066MR1381990
  3. [3] Bonatti Ch., Diaz L.J., Connexions hétéroclines et généricité d'une infinité de puits ou de sources, Ann. Scient. Éc. Norm. Sup. Paris32 (1999) 135-150. Zbl0944.37012MR1670524
  4. [4] Bonatti Ch., Diaz L.J., On maximal transitive sets of generic diffeomorphisms, preprint PUC-Rio, 2001. 
  5. [5] Bonatti Ch., Diaz L.J., Pujals E., A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. Math., to appear. Zbl1049.37011MR2018925
  6. [6] Bonatti Ch., Diaz L.J., Pujals E., Rocha J., Robustly transitive sets and heterodimensional cycles, Astérisque, to appear. Zbl1056.37024MR2052302
  7. [7] Bonatti Ch., Viana M., SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math.115 (2000) 157-193. Zbl0996.37033MR1749677
  8. [8] Carballo C.M., Morales C.A., Homoclinic classes and finitude of attractors for vector fields on n-manifolds, preprint, 2001. Zbl1035.37007MR1934436
  9. [9] Carballo C.M., Morales C.A., Pacifico M.J., Homoclinic classes for generic C1 vector fields, Ergodic Theory Dynam. Systems, to appear. Zbl1047.37009MR1972228
  10. [10] Diaz L.J., Pujals E., Ures R., Partial hyperbolicity and robust transitivity, Acta Math.183 (1999) 1-43. Zbl0987.37020MR1719547
  11. [11] Franks J., Necessary conditions for stability of diffeomorphisms, Trans. AMS158 (1971) 301-308. Zbl0219.58005MR283812
  12. [12] Hayashi S., Diffeomorphisms in I1(M) satisfy Axiom A, Ergodic Theory Dynam. Systems12 (1992) 233-253. Zbl0760.58035MR1176621
  13. [13] Hayashi S., Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows, Ann. Math.145 (1997) 81-137. Zbl0871.58067
  14. [14] Kelley J.L., General Topology, New York, Springer, 1955. Zbl0306.54002MR70144
  15. [15] Mañé R., Contributions to the C1-stability conjecture, Topology17 (1978) 386-396. Zbl0405.58035MR516217
  16. [16] Mañé R., An ergodic closing lemma, Ann. Math.116 (1982) 503-540. Zbl0511.58029MR678479
  17. [17] Palis J., A global view of dynamics and a conjecture on the denseness of finitude of atttractors, Astérisque261 (2000) 335-347. Zbl1044.37014MR1755446
  18. [18] Pugh C., An improved closing lemma and a general density theorem, Amer. J. Math.89 (1967) 1010-1021. Zbl0167.21804MR226670
  19. [19] Pujals E., Sambarino M., Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: a conjecture of Palis, Ann. Math.151 (2000) 961-1023. Zbl0959.37040MR1779562
  20. [20] Palis J., Takens F., Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Univ. Press, 1993. Zbl0790.58014MR1237641
  21. [21] Shub M., Global Stability of Dynamical Systems, Springer-Verlag, New York, 1986. Zbl0606.58003MR869255

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.