Hodge modules on Shimura varieties and their higher direct images in the Baily–Borel compactification

José I. Burgos; Jörg Wildeshaus

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 3, page 363-413
  • ISSN: 0012-9593

How to cite

top

Burgos, José I., and Wildeshaus, Jörg. "Hodge modules on Shimura varieties and their higher direct images in the Baily–Borel compactification." Annales scientifiques de l'École Normale Supérieure 37.3 (2004): 363-413. <http://eudml.org/doc/82634>.

@article{Burgos2004,
author = {Burgos, José I., Wildeshaus, Jörg},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Shimura varieties; Baily-Borel compactification; degeneration of Hodge modules},
language = {eng},
number = {3},
pages = {363-413},
publisher = {Elsevier},
title = {Hodge modules on Shimura varieties and their higher direct images in the Baily–Borel compactification},
url = {http://eudml.org/doc/82634},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Burgos, José I.
AU - Wildeshaus, Jörg
TI - Hodge modules on Shimura varieties and their higher direct images in the Baily–Borel compactification
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 3
SP - 363
EP - 413
LA - eng
KW - Shimura varieties; Baily-Borel compactification; degeneration of Hodge modules
UR - http://eudml.org/doc/82634
ER -

References

top
  1. [1] Ash A, Mumford D, Rapoport M, Tai Y, Smooth Compactification of Locally Symmetric Varieties, Lie Groups: History, Frontiers and Applications, vol. IV, Math. Sci. Press, 1975. Zbl0334.14007MR457437
  2. [2] Baily W.L, Borel A, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math.84 (1966) 442-528. Zbl0154.08602MR216035
  3. [3] Beilinson A.A, On the derived category of perverse sheaves, in: Manin Yu.I (Ed.), K-Theory, Arithmetic and Geometry, Lect. Notes Math., vol. 1289, Springer, Berlin, 1987, pp. 27-41. Zbl0652.14008MR923133
  4. [4] Beilinson A.A, Bernstein J, Deligne P, Faisceaux pervers, in: Teissier B, Verdier J.-L (Eds.), Analyse et topologie sur les espaces singuliers (I), Astérisque, vol. 100, Soc. Math. France, 1982. Zbl0536.14011MR751966
  5. [5] Borel A, Serre J.-P, Corners and arithmetic groups, Comment. Math. Helv.48 (1973) 436-491. Zbl0274.22011MR387495
  6. [6] Burgos J.I, Wildeshaus J, Modules de Hodge sur les variétés de Shimura, et leur dégénérescence dans la compactification de Baily–Borel, C. R. Acad. Sci. Paris336 (2003) 29-34. Zbl1051.14026MR1968898
  7. [7] Cattani E, Kaplan A, Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Inv. Math.67 (1982) 101-115. Zbl0516.14005MR664326
  8. [8] Cattani E, Kaplan A, Schmid W, Degeneration of Hodge structures, Ann. of Math.123 (1986) 457-535. Zbl0617.14005MR840721
  9. [9] Deligne P, Cohomologie à supports propres, in: SGA4III, Lect. Notes Math., vol. 305, Springer, Berlin, 1973, pp. 250-480. Zbl0255.14011MR354654
  10. [10] Deligne P, La conjecture de Weil. II, Publ. Math. IHES52 (1981) 313-428. Zbl0456.14014MR601520
  11. [11] Galligo A, Granger M, Maisonobe P, D-modules et faisceaux pervers dont le support singulier est un croisement normal, Ann. Inst. Fourier (Grenoble)35 (1985) 1-48. Zbl0572.32012MR781776
  12. [12] Harder G., Eisenstein-Kohomologie arithmetischer Gruppen: Allgemeine Aspekte, Preprint, Bonn, 1986. 
  13. [13] Harris M, Zucker S, Boundary cohomology of Shimura varieties II. Hodge theory at the boundary, Inv. Math.116 (1994) 243-307. Zbl0860.11031MR1253194
  14. [14] Harris M, Zucker S, Boundary Cohomology of Shimura Varieties III. Coherent Cohomology on Higher-Rank Boundary Strata and Applications to Hodge Theory, Mémoires de la SMF, vol. 85, Soc. Math. France, 2001. Zbl1020.11042MR1850830
  15. [15] Kashiwara M, A study of variation of mixed Hodge structure, Publ. RIMS, Kyoto Univ.22 (1986) 991-1024. Zbl0621.14007MR866665
  16. [16] Kempf G, Knudsen F, Mumford D, Saint-Donat B, Toroidal Embeddings. I, Lect. Notes Math., vol. 339, Springer, Berlin, 1973. Zbl0271.14017MR335518
  17. [17] Looijenga E, Rapoport M, Weights in the local cohomology of a Baily–Borel compactification, in: Carlson J.A, Clemens C.H, Morrison D.R (Eds.), Complex Geometry and Lie Theory, Proc. of Symp. in Pure Math., vol. 53, Amer. Math. Society, 1991, pp. 223-260. Zbl0753.14016MR1141203
  18. [18] Pink R, Arithmetical Compactification of Mixed Shimura Varieties, Bonner Mathematische Schriften, vol. 209, Univ. Bonn, 1990. Zbl0748.14007MR1128753
  19. [19] Pink R, On ℓ-adic sheaves on Shimura varieties and their higher direct images in the Baily–Borel compactification, Math. Ann.292 (1992) 197-240. Zbl0748.14008MR1149032
  20. [20] Raghunathan M.S, Cohomology of arithmetic subgroups of algebraic groups: I, Ann. of Math.86 (1967) 409-424. Zbl0157.06802
  21. [21] Saito M, Mixed Hodge modules, Publ. RIMS, Kyoto Univ.26 (1990) 221-333. Zbl0727.14004MR1047415
  22. [22] Schmid W, Variations of Hodge structure: the singularities of the period mapping, Inv. Math.22 (1973) 211-319. Zbl0278.14003MR382272
  23. [23] Serre J.-P, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier6 (1955–56) 1-42. Zbl0075.30401MR82175
  24. [24] Verdier J.-L, Catégories dérivées, état 0, in: SGA 41/2, Lect. Notes Math., vol. 569, Springer, Berlin, 1977, pp. 262-311. Zbl0407.18008
  25. [25] Verdier J.-L, Spécialisation de faisceaux et monodromie modérée, in: Teissier B, Verdier J.-L (Eds.), Analyse et topologie sur les espaces singuliers (II–III), Astérisque, vol. 101–102, Soc. Math. France, 1982, pp. 332-364. Zbl0532.14008MR737938
  26. [26] Verdier J.-L, Extension of a perverse sheaf over a closed subspace, in: Galligo A, Granger M, Maisonobe P (Eds.), Systèmes différentiels et singularités, Astérisque, vol. 130, Soc. Math. France, 1985, pp. 210-217. Zbl0572.14011MR804054
  27. [27] Vogan D.A, Representations of Real Reductive Lie Groups, Prog. in Math., vol. 15, Birkhäuser, Basel, 1981. Zbl0469.22012MR632407
  28. [28] Wildeshaus J, The canonical construction of mixed sheaves on mixed Shimura varieties, in: Realizations of Polylogarithms, Lect. Notes Math., vol. 1650, Springer, Berlin, 1997, pp. 77-140. MR1482233
  29. [29] Wildeshaus J, Mixed sheaves on Shimura varieties and their higher direct images in toroidal compactifications, J. Algebraic Geom.9 (2000) 323-353. Zbl0956.14017MR1735776
  30. [30] Wildeshaus J, On derived functors on categories without enough injectives, J. Pure Appl. Algebra150 (2000) 207-213. Zbl0966.18008MR1765871

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.