Stark–Heegner points on modular jacobians
Annales scientifiques de l'École Normale Supérieure (2005)
- Volume: 38, Issue: 3, page 427-469
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDasgupta, Samit. "Stark–Heegner points on modular jacobians." Annales scientifiques de l'École Normale Supérieure 38.3 (2005): 427-469. <http://eudml.org/doc/82665>.
@article{Dasgupta2005,
author = {Dasgupta, Samit},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {3},
pages = {427-469},
publisher = {Elsevier},
title = {Stark–Heegner points on modular jacobians},
url = {http://eudml.org/doc/82665},
volume = {38},
year = {2005},
}
TY - JOUR
AU - Dasgupta, Samit
TI - Stark–Heegner points on modular jacobians
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 3
SP - 427
EP - 469
LA - eng
UR - http://eudml.org/doc/82665
ER -
References
top- [1] Bertolini M., Darmon H., Heegner points, p-adic L-functions and the Cerednik–Drinfeld uniformization, Invent. Math.131 (1998) 453-491. Zbl0899.11029MR1614543
- [2] Bertolini M., Darmon H., The rationality of Stark–Heegner points over genus fields of real quadratic fields, in preparation. Zbl1203.11045
- [3] Bertolini M., Darmon H., Dasgupta S., Stark–Heegner points and special values of L-series, in preparation. Zbl1170.11015
- [4] Bosch S., Lütkebohmert W., Degenerating Abelian varieties, Topology30 (4) (1991) 653-698. Zbl0761.14015MR1133878
- [5] Bosch S., Lútkebohmert W., Raynaud M., Néron Models, Ergeb. Math. Grenzgeb. (3), vol. 21, Springer, Berlin, 1990. Zbl0705.14001MR1045822
- [6] Darmon H., Integration on and arithmetic applications, Ann. of Math. (2)154 (3) (2001) 589-639. Zbl1035.11027MR1884617
- [7] Darmon H., Dasgupta S., Elliptic units for real quadratic fields, Ann. of Math., submitted for publication. Zbl1130.11030
- [8] Darmon H., Green P., Elliptic curves and class fields of real quadratic fields: Algorithms and verifications, Experimental Math.11 (1) (2002) 37-55. Zbl1040.11048MR1960299
- [9] Darmon H., Pollack R., The efficient calculation of Stark–Heegner points via overconvergent modular symbols, in preparation. Zbl1157.11028
- [10] Dasgupta S., Gross–Stark units, Stark–Heegner points, and class fields of real quadratic fields, PhD thesis, University of California–Berkeley, May 2004.
- [11] Dasgupta S., Computations of elliptic units for real quadratic fields, Canad. J. Math., in press. Zbl1118.11045
- [12] Deligne P., Rapoport M., Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., vol. 349, Springer, Berlin, 1973, pp. 143-316. Zbl0281.14010MR337993
- [13] de Shalit E., p-adic periods and modular symbols of elliptic curves of prime conductor, Invent. Math.121 (2) (1995) 225-255. Zbl1044.11576MR1346205
- [14] de Shalit E., On the p-adic periods of , Math. Ann.303 (1995) 457-472. Zbl0864.14014MR1355000
- [15] Gerritzen L., van der Put M., Schottky Groups and Mumford Curves, Lecture Notes in Math., vol. 817, Springer, Berlin, 1980. Zbl0442.14009MR590243
- [16] Greenberg R., Stevens G., p-adic L-functions and p-adic periods of modular forms, Invent. Math.111 (2) (1993) 407-447. Zbl0778.11034MR1198816
- [17] Greenberg R., Stevens G., On the conjecture of Mazur, Tate, and Teitelbaum, in: p-Adic Monodromy and the Birch and Swinnerton-Dyer conjecture, Boston, MA, 1991, Contemp. Math., vol. 165, American Mathematical Society, Providence, RI, 1994, pp. 123-211. Zbl0846.11030MR1279610
- [18] Griffiths P., Harris J., Principles of Algebraic Geometry, Reprint of the 1978 original, Wiley Classics Library, Wiley, New York, 1994. Zbl0836.14001MR1288523
- [19] Gross B.H., p-adic L-series at , J. Fac. Sci. Univ. Tokyo Sect. IA Math.28 (3) (1981) 979-994, (1982). Zbl0507.12010MR656068
- [20] Gross B.H., Kolyvagin's work on modular elliptic curves, in: L-Functions and Arithmetic, Durham, 1989, London Math. Soc. Lecture Note Ser., vol. 153, Cambridge University Press, Cambridge, 1991, pp. 235-256. Zbl0743.14021MR1110395
- [21] Gross B.H., Zagier D.B., Heegner points and derivatives of L-series, Invent. Math.84 (2) (1986) 225-320. Zbl0608.14019MR833192
- [22] Hida H., Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4)19 (2) (1986) 231-273. Zbl0607.10022MR868300
- [23] Ichikawa T., Schottky uniformization theory on Riemann surfaces Mumford curves of infinite genus, J. reine Angew. Math.486 (1997) 45-68. Zbl0872.14020MR1450750
- [24] Ihara Y., On Congruence Monodromy Problems, vols. 1 and 2, Lecture Notes, vols. 1–2, Department of Mathematics, University of Tokyo, Tokyo, 1968. Zbl0228.14009MR289518
- [25] Koebe P., Über die Uniformisierung der algebraischen Kurven IV, Math. Ann.75 (1914) 42-129. Zbl45.0669.01MR1511787JFM45.0669.01
- [26] Kolyvagin V.A., Euler systems, in: The Grothendieck Festschrift, vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435-483. Zbl0742.14017MR1106906
- [27] Kolyvagin V.A., Logachëv D.Y., Finiteness of the Shafarevich–Tate group and the group of rational points for some modular Abelian varieties, Algebra i Analiz1 (5) (1989) 171-196, (in Russian); translation in, Leningrad Math. J.1 (5) (1990) 1229-1253. Zbl0728.14026MR1036843
- [28] Manin J.I., Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat.36 (1) (1972) 19-66. Zbl0243.14008MR314846
- [29] Manin Y.I., Drinfeld V., Periods of p-adic Schottky groups, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, J. reine Angew. Math.262/263 (1973) 239-247. Zbl0275.14017MR396582
- [30] Mazur B., Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math.47 (1977) 33-186, (1978). Zbl0394.14008MR488287
- [31] Mazur B., On the arithmetic of special values of L functions, Invent. Math.55 (3) (1979) 207-240. Zbl0426.14009MR553997
- [32] Mazur B., Tate J., Teitelbaum J., On p-adic analogues of the conjectures of Birch–Swinnerton-Dyer, Invent. Math.84 (1) (1986) 1-48. Zbl0699.14028MR830037
- [33] Mazur B., Wiles A., Class fields of Abelian extensions of Q, Invent. Math.76 (2) (1984) 179-330. Zbl0545.12005MR742853
- [34] Mazur B., Wiles A., On p-adic analytic families of Galois representations, Compositio Math.59 (2) (1986) 231-264. Zbl0654.12008MR860140
- [35] Mumford D., An analytic construction of degenerating curves over complete local rings, Compositio Math.24 (2) (1972) 129-174. Zbl0228.14011MR352105
- [36] Ribet K., Congruence relations between modular forms, in: Proceedings of the International Congress of Mathematicians, vols. 1 and 2, Warsaw, 1983, PWN, Warsaw, 1984, pp. 503-514. Zbl0575.10024MR804706
- [37] Schottky F., Über eine specielle Function, welche bei einer bestimmten linearen Transformation ihres Arguments univerändert bleibt, J. reine Angew. Math.101 (1887) 227-272. JFM19.0424.02
- [38] Serre J.-P., Trees, Translated from the French original by John Stillwell. Corrected 2nd printing of the 1980 English translation, Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl1013.20001MR607504
- [39] Teitelbaum J., p-adic periods of genus two Mumford–Schottky curves, J. reine Angew. Math.385 (1988) 117-151. Zbl0636.14011MR931217
- [40] Washington L., Galois cohomology, in: Modular Forms and Fermat's Last Theorem, Boston, MA, 1995, Springer, New York, 1997, pp. 101-120. Zbl0928.12003MR1638477
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.