Stark–Heegner points on modular jacobians

Samit Dasgupta

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 3, page 427-469
  • ISSN: 0012-9593

How to cite

top

Dasgupta, Samit. "Stark–Heegner points on modular jacobians." Annales scientifiques de l'École Normale Supérieure 38.3 (2005): 427-469. <http://eudml.org/doc/82665>.

@article{Dasgupta2005,
author = {Dasgupta, Samit},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {3},
pages = {427-469},
publisher = {Elsevier},
title = {Stark–Heegner points on modular jacobians},
url = {http://eudml.org/doc/82665},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Dasgupta, Samit
TI - Stark–Heegner points on modular jacobians
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 3
SP - 427
EP - 469
LA - eng
UR - http://eudml.org/doc/82665
ER -

References

top
  1. [1] Bertolini M., Darmon H., Heegner points, p-adic L-functions and the Cerednik–Drinfeld uniformization, Invent. Math.131 (1998) 453-491. Zbl0899.11029MR1614543
  2. [2] Bertolini M., Darmon H., The rationality of Stark–Heegner points over genus fields of real quadratic fields, in preparation. Zbl1203.11045
  3. [3] Bertolini M., Darmon H., Dasgupta S., Stark–Heegner points and special values of L-series, in preparation. Zbl1170.11015
  4. [4] Bosch S., Lütkebohmert W., Degenerating Abelian varieties, Topology30 (4) (1991) 653-698. Zbl0761.14015MR1133878
  5. [5] Bosch S., Lútkebohmert W., Raynaud M., Néron Models, Ergeb. Math. Grenzgeb. (3), vol. 21, Springer, Berlin, 1990. Zbl0705.14001MR1045822
  6. [6] Darmon H., Integration on H p × H and arithmetic applications, Ann. of Math. (2)154 (3) (2001) 589-639. Zbl1035.11027MR1884617
  7. [7] Darmon H., Dasgupta S., Elliptic units for real quadratic fields, Ann. of Math., submitted for publication. Zbl1130.11030
  8. [8] Darmon H., Green P., Elliptic curves and class fields of real quadratic fields: Algorithms and verifications, Experimental Math.11 (1) (2002) 37-55. Zbl1040.11048MR1960299
  9. [9] Darmon H., Pollack R., The efficient calculation of Stark–Heegner points via overconvergent modular symbols, in preparation. Zbl1157.11028
  10. [10] Dasgupta S., Gross–Stark units, Stark–Heegner points, and class fields of real quadratic fields, PhD thesis, University of California–Berkeley, May 2004. 
  11. [11] Dasgupta S., Computations of elliptic units for real quadratic fields, Canad. J. Math., in press. Zbl1118.11045
  12. [12] Deligne P., Rapoport M., Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., vol. 349, Springer, Berlin, 1973, pp. 143-316. Zbl0281.14010MR337993
  13. [13] de Shalit E., p-adic periods and modular symbols of elliptic curves of prime conductor, Invent. Math.121 (2) (1995) 225-255. Zbl1044.11576MR1346205
  14. [14] de Shalit E., On the p-adic periods of X 0 p , Math. Ann.303 (1995) 457-472. Zbl0864.14014MR1355000
  15. [15] Gerritzen L., van der Put M., Schottky Groups and Mumford Curves, Lecture Notes in Math., vol. 817, Springer, Berlin, 1980. Zbl0442.14009MR590243
  16. [16] Greenberg R., Stevens G., p-adic L-functions and p-adic periods of modular forms, Invent. Math.111 (2) (1993) 407-447. Zbl0778.11034MR1198816
  17. [17] Greenberg R., Stevens G., On the conjecture of Mazur, Tate, and Teitelbaum, in: p-Adic Monodromy and the Birch and Swinnerton-Dyer conjecture, Boston, MA, 1991, Contemp. Math., vol. 165, American Mathematical Society, Providence, RI, 1994, pp. 123-211. Zbl0846.11030MR1279610
  18. [18] Griffiths P., Harris J., Principles of Algebraic Geometry, Reprint of the 1978 original, Wiley Classics Library, Wiley, New York, 1994. Zbl0836.14001MR1288523
  19. [19] Gross B.H., p-adic L-series at s = 0 , J. Fac. Sci. Univ. Tokyo Sect. IA Math.28 (3) (1981) 979-994, (1982). Zbl0507.12010MR656068
  20. [20] Gross B.H., Kolyvagin's work on modular elliptic curves, in: L-Functions and Arithmetic, Durham, 1989, London Math. Soc. Lecture Note Ser., vol. 153, Cambridge University Press, Cambridge, 1991, pp. 235-256. Zbl0743.14021MR1110395
  21. [21] Gross B.H., Zagier D.B., Heegner points and derivatives of L-series, Invent. Math.84 (2) (1986) 225-320. Zbl0608.14019MR833192
  22. [22] Hida H., Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4)19 (2) (1986) 231-273. Zbl0607.10022MR868300
  23. [23] Ichikawa T., Schottky uniformization theory on Riemann surfaces Mumford curves of infinite genus, J. reine Angew. Math.486 (1997) 45-68. Zbl0872.14020MR1450750
  24. [24] Ihara Y., On Congruence Monodromy Problems, vols. 1 and 2, Lecture Notes, vols. 1–2, Department of Mathematics, University of Tokyo, Tokyo, 1968. Zbl0228.14009MR289518
  25. [25] Koebe P., Über die Uniformisierung der algebraischen Kurven IV, Math. Ann.75 (1914) 42-129. Zbl45.0669.01MR1511787JFM45.0669.01
  26. [26] Kolyvagin V.A., Euler systems, in: The Grothendieck Festschrift, vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435-483. Zbl0742.14017MR1106906
  27. [27] Kolyvagin V.A., Logachëv D.Y., Finiteness of the Shafarevich–Tate group and the group of rational points for some modular Abelian varieties, Algebra i Analiz1 (5) (1989) 171-196, (in Russian); translation in, Leningrad Math. J.1 (5) (1990) 1229-1253. Zbl0728.14026MR1036843
  28. [28] Manin J.I., Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat.36 (1) (1972) 19-66. Zbl0243.14008MR314846
  29. [29] Manin Y.I., Drinfeld V., Periods of p-adic Schottky groups, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, J. reine Angew. Math.262/263 (1973) 239-247. Zbl0275.14017MR396582
  30. [30] Mazur B., Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math.47 (1977) 33-186, (1978). Zbl0394.14008MR488287
  31. [31] Mazur B., On the arithmetic of special values of L functions, Invent. Math.55 (3) (1979) 207-240. Zbl0426.14009MR553997
  32. [32] Mazur B., Tate J., Teitelbaum J., On p-adic analogues of the conjectures of Birch–Swinnerton-Dyer, Invent. Math.84 (1) (1986) 1-48. Zbl0699.14028MR830037
  33. [33] Mazur B., Wiles A., Class fields of Abelian extensions of Q, Invent. Math.76 (2) (1984) 179-330. Zbl0545.12005MR742853
  34. [34] Mazur B., Wiles A., On p-adic analytic families of Galois representations, Compositio Math.59 (2) (1986) 231-264. Zbl0654.12008MR860140
  35. [35] Mumford D., An analytic construction of degenerating curves over complete local rings, Compositio Math.24 (2) (1972) 129-174. Zbl0228.14011MR352105
  36. [36] Ribet K., Congruence relations between modular forms, in: Proceedings of the International Congress of Mathematicians, vols. 1 and 2, Warsaw, 1983, PWN, Warsaw, 1984, pp. 503-514. Zbl0575.10024MR804706
  37. [37] Schottky F., Über eine specielle Function, welche bei einer bestimmten linearen Transformation ihres Arguments univerändert bleibt, J. reine Angew. Math.101 (1887) 227-272. JFM19.0424.02
  38. [38] Serre J.-P., Trees, Translated from the French original by John Stillwell. Corrected 2nd printing of the 1980 English translation, Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl1013.20001MR607504
  39. [39] Teitelbaum J., p-adic periods of genus two Mumford–Schottky curves, J. reine Angew. Math.385 (1988) 117-151. Zbl0636.14011MR931217
  40. [40] Washington L., Galois cohomology, in: Modular Forms and Fermat's Last Theorem, Boston, MA, 1995, Springer, New York, 1997, pp. 101-120. Zbl0928.12003MR1638477

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.